- 1. Which of the following sequences of functions converge uniformly on X?
- (a) $f_n(x) = x^n$ on X = [0, 1];
- (b) $f_n(x) = \sin(n^2 x)/\log n$ on $X = \mathbb{R}$;
- (c) $f_n(x) = x^n$ on X = (0, 1);
- (d) $f_n(x) = x^n$ on $X = (0, \frac{1}{2})$;
- (e) $f_n(x) = xe^{-nx}$ on $X = [0, \infty)$;
- (f) $f_n(x) = e^{-x^2} \sin(x/n)$ on $X = \mathbb{R}$.
- 2. Suppose that $f:[0,1] \to \mathbb{R}$ is continuous. Show that the sequence $(x^n f(x))$ is uniformly convergent on [0,1] if and only if f(1) = 0.
- 3. Construct a sequence (f_n) of *continuous* real-valued functions on [-1,1] converging pointwise to the zero function but with $\int_{-1}^{1} f_n \neq 0$. ⁺Is it possible to find such a sequence with $|f_n(x)| \leq 1$ for all n and for all x?
- 4. (a) Let (f_n) be a sequence of real-valued functions on a subset X of \mathbb{R} converging uniformly to a function f. Suppose that each of the f_n is bounded. Show that f must be bounded.
- (b) Give an example of a sequence (g_n) of bounded, real-valued functions on [-1, 1] converging pointwise to a function g which is not bounded.
- 5. Let (f_n) and (g_n) be sequences of real-valued functions on a subset X of \mathbb{R} converging uniformly to f and g respectively.
- (a) Show that $f_n + g_n$ converges uniformly to f + g, and that λf_n converges uniformly to λf for each $\lambda \in \mathbb{R}$.
- (b) Show that f_ng_n need not converge uniformly to fg, but that if both f and g are bounded then f_ng_n does converge uniformly to fg. What if f is bounded but g is not?

[Here and elsewhere, for functions f and g, the functions f+g and fg are the pointwise sum and product respectively, i.e. (f+g)(x)=f(x)+g(x) and (fg)(x)=f(x)g(x). For $\lambda \in \mathbb{R}$, the function λf is defined by $(\lambda f)(x)=\lambda f(x)$.]

- 6. Let (f_n) be a sequence of real-valued continuous functions on a closed, bounded interval [a, b], and suppose that f_n converges pointwise to a continuous function f. Show that if $f_n \to f$ uniformly and (x_m) is a sequence of points in [a, b] with $x_m \to x$ then $f_n(x_n) \to f(x)$. On the other hand, show that if f_n does not converge uniformly to f then we can find a convergent sequence $x_m \to x$ in [a, b] such that $f_n(x_n) \to f(x)$.
- 7. Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series of real numbers.
- (a) Define a sequence (f_n) of functions on $[-\pi, \pi]$ by $f_n(x) = \sum_{m=1}^n a_m \sin mx$. Show that each f_n is differentiable with $f'_n(x) = \sum_{m=1}^n m a_m \cos mx$.
- (b) Show that $f(x) = \sum_{m=1}^{\infty} a_m \sin mx$ defines a continuous function on $[-\pi, \pi]$, but that the series $\sum_{m=1}^{\infty} m a_m \cos mx$ need not converge.
 - $^{+}$ (c) Must f be differentiable? Give a proof or counterexample as appropriate.

- 8. Let f and g be uniformly continuous, real-valued functions on a subset X of \mathbb{R} .
 - (a) Show that f+g is uniformly continuous, and that λf is uniformly continuous for each $\lambda \in \mathbb{R}$.
- (b) Show that fg need not be uniformly continuous, but that if both f and g are bounded then fg is uniformly continuous. What if f is bounded but g is not?
- 9. Which of the following functions $f:[0,\infty)\to\mathbb{R}$ are (a) uniformly continuous; (b) bounded?
- (i) $f(x) = \sin x^2$;
- (ii) $f(x) = \inf\{|x n^2| : n \in \mathbb{N}\};$
- (iii) $f(x) = (\sin x^3)/(x+1)$.
- 10. (a) Show that if (f_n) is a sequence of uniformly continuous, real-valued functions on \mathbb{R} , and if $f_n \to f$ uniformly, then f is uniformly continuous.
- (b) Give an example of a sequence of uniformly continuous, real-valued functions (f_n) on \mathbb{R} such that f_n converges pointwise to a function f which is continuous but not uniformly continuous.
- 11. Suppose that $f:[0,\infty)\to\mathbb{R}$ is continuous, and that f(x) tends to a (finite) limit as $x\to\infty$. Must f be uniformly continuous on $[0,\infty)$? Give a proof or counterexample as appropriate.
- 12. Let f be a differentiable, real-valued function on \mathbb{R} , and suppose that f' is bounded. Show that f is uniformly continuous. (You may wish to use the Mean Value Theorem.)

Let $g: [-1,1] \to \mathbb{R}$ be the function defined by $g(x) = x^2 \sin(1/x^2)$ for $x \neq 0$ and g(0) = 0. Show that g is differentiable, but that its derivative is unbounded. Is g uniformly continuous?

- 13. Does there exist an integrable function $f:[0,1] \to \mathbb{R}$ such that f(x) > 0 for all $x \in [0,1]$, but with $\int_0^1 f = 0$?
- 14. Let (f_n) be a sequence of continuous, real-valued functions on [0,1] converging pointwise to a function f. Prove that there is some subinterval [a,b] of [0,1] with a < b on which f is bounded.