Analysis II Example Sheet 3

Michaelmas 2006

Corrections and comments to walters@dpmms.cam.ac.uk

MJW

- For each of the following sets X, determine whether the given function d defines a metric on X:
 (i) X = ℝⁿ, d(x, y) = min{|x₁ y₁|,..., |x_n y_n|}.
 - (ii) $X = \mathbb{Z}$, d(x, x) = 0 for all x, otherwise $d(x, y) = 2^n$ if $x y = 2^n a$ where a is odd.
 - (iii) $X = \mathbb{Q}$, d(x, x) = 0 for all x, otherwise $d(x, y) = 3^{-n}$ if $x y = 3^n a/b$ where a, b are prime to 3 (and n may be positive, negative or zero).
 - (iv) $X = \{ \text{functions } \mathbb{N} \to \mathbb{N} \}, d(f, f) = 0$, otherwise $d(f, g) = 2^{-n}$ for the least n such that $f(n) \neq g(n)$.

(v) $X = \mathbb{C}$, d(z, w) = |z - w| if z and w are on the same straight line through 0, otherwise d(z, w) = |z| + |w|.

- 2. Let d be the normal metric on \mathbb{R} and let d' be the discrete metric on \mathbb{R} (that is d(x,y) = 1 if $x \neq y$ and d(x,x) = 0). Show that all functions $f: (\mathbb{R}, d') \to (\mathbb{R}, d)$ are continuous. What are the continuous functions from $(\mathbb{R}, d) \to (\mathbb{R}, d')$.
- 3. In the metric space defined in Q1 part (iii) does the sequence $x_n = 3^n$ converge? What about $y_n = \sum_{i=0}^n 3^i$? And $z_n = \sum_{i=0}^n 3^i$? Are they Cauchy? Is this metric space complete?
- 4. Let (X, d) be a metric space. Show that

$$d_1(x,y) = \min(1, d(x,y))$$
 and $d_2(x,y) = \frac{d(x,y)}{1+d(x,y)}$

are metrics on X topologically equivalent to d. Are the metrics d, d_1 and d_2 uniformly equivalent? Are they Lipschitz equivalent?

- 5. Suppose that (X, d_X) and (Y, d_Y) are metric spaces and that d_Y is bounded: i.e., $d_Y(y, y') < M$ for all $y, y' \in Y$. Show that the set of functions from $X \to Y$ with distance D defined by $D(f, g) = \sup_{x \in X} d_Y(f(x), g(x))$ is a metric space.
- 6. Suppose that a metric d on a set X satisfies the following stronger form of the triangle inequality:

$$d(x,z) \le \max\{d(x,y), d(y,z)\} \quad \text{for all } x, y, z \in X .$$

Show that every open ball in X is also a closed set. Does it follow that every open set must be closed? Give an example of such a metric space.

7. (i) Show that the space of real sequences $\mathbf{a} = (a_n)_{n=1}^{\infty}$ with all but finitely many of the a_n are zero is not complete in the norm defined by $\|\mathbf{a}\|_1 = \sum_{n=1}^{\infty} |a_n|$. Is there an obvious way of 'completing' the space?

(ii) Let $\|\cdot\|_1$ be the norm on the space of the continuous functions on [0, 1] defined by $\|f\|_1 = \int_0^1 |f|$ (see sheet 2 Q2). Is this norm complete?

- 8. Let X be the space of bounded real sequences. Is there a metric on X such that a sequence of vectors $x^{(n)} \to x$ in the metric if and only if $x^{(n)}$ converges to x coordinatewise? Is there a norm with this property?
- 9. Let (X, d) be a metric space. Let C(X) denote the space of bounded continuous functions from $X \to \mathbb{R}$ with norm $||f|| = \sup_{x \in X} |f(x)|$. Show carefully that the space C(X) is complete in this norm. [Hint: we saw in lectures that the space C([0, 1]) with the sup norm is complete.]
- 10. Show that $x = \cos x$ has a unique solution. Use a reasonable pocket calculator to find the solution to some decimal places. (This should take no time. Remember to work in radians!)
- 11. Find a linear map α from \mathbb{R}^2 to \mathbb{R}^2 that is a contraction in the usual Euclidean norm but not in the norm $||(x, y)||_{\infty} = \max |x|, |y|$.
- 12. Let I = [0, R] be an interval and let C(I) be the space of continuous functions on I. Show that, for any α the norm ||f|| = sup_{x∈I} ||f(x)e^{-αx}|| is an equivalent norm to the usual sup norm. Now suppose that φ : ℝ² → ℝ is continuous and Lipschitz in the second variable. Show that there exists a norm on C(I) such that the map sending f to y₀ + ∫₀^x φ(t, f(t))dt is a contraction. Deduce that the differential equation f'(x) = φ(x, f(x)) has a unique solution on I satisfying f(0) = y₀.
- 13. Let X, d be a metric space and suppose that $f: X \to X$ and for some n the function f^n has a unique fixed point (where f^n denotes the function f applied n times). Prove that f has a unique fixed point.
- 14. Suppose that X is a closed and bounded subset of \mathbb{R}^n , and that $f: X \to X$ is a map such that d(f(x), f(y)) < d(x, y) for all $x \neq y$ where d is the metric inherited from the usual Euclidean norm on \mathbb{R}^n . Must f have a fixed point?
- 15. [Tripos IB 93301(b)] Let (X, d) be a metric space without isolated points (i.e. such that $\{x\}$ is not open for any $x \in X$), and $(x_n)_{n\geq 0}$ a sequence of points of X. Show that it is possible to find a sequence of points y_n of X and positive real numbers r_n such that $r_n \to 0$, $d(x_n, y_n) > r_n$ and

$$B(y_n, r_n) \subseteq B(y_{n-1}, r_{n-1})$$

for each n > 0. Deduce that a nonempty complete metric space without isolated points has uncountably many points.

- 16. Suppose that (X, d) is a metric space. Must there exist a subset of a normed space isometric to X? (I.e., must there exist a distance preserving map from X into a normed space?)
- 17. Let X be the space of continuous functions on [0, 1]. Is there a metric on X such that a sequence of functions $f_n \to f$ in the metric if and only if f_n converges to f pointwise?