Analysis II Example Sheet 2

Michaelmas 2006

Corrections and comments to walters@dpmms.cam.ac.uk

MJW

Unless otherwise specified the space \mathbb{R}^n may be assumed to have the Euclidean norm $||x|| = ||x||_2 = \sqrt{\sum_i x_i^2}$ and the space C([0,1]) the sup norm $||f|| = ||f||_{\infty} = \sup_x |f(x)|$. The space l_{∞} is the space of all bounded real sequences $(x_i)_{i=1}^{\infty}$ with norm $||x|| = \sup_i |x_i|$.

- 1. Show that $||x||_1 = \sum_{i=1}^n |x_i|$ is a norm on \mathbb{R}^n . Show explicitly that it is Lipschitz Equivalent to $||\cdot||_2$.
- 2. a) Show carefully that the vector space of continuous functions on [0, 1] with norm $||f||_1 = \int_0^1 |f|$ is a normed space.
 - b) Is this norm equivalent to the uniform norm $\|\cdot\|_{\infty}$?
 - c) Is the space of all (Riemann) integrable functions with norm $||f|| = \int_0^1 |f|$ a normed space?
- 3. Which of the following subsets of \mathbb{R}^2 are (a) open, (b) closed? (And why?)
 - (i) $\{(x,0) : 0 \le x \le 1\}$ (ii) $\{(x,0) : 0 < x < 1\}$ (iii) $\{(x,y) : y \ne 0\}$
 - (iv) $\{(x,y): x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}$ (v) $\{(x,y): xy = 1\}$ (vi) $\{(x,y): y = nx, n \in \mathbb{N}\} \cup \{(x,y): x = 0\}$ (vii) $\{x_n: n \in \mathbb{N}\} \cup \{x\}$ where (x_n) is a sequence in \mathbb{R}^2 converging to x.
 - (viii) $\{(x, f(x)) : x \in \mathbb{R}\}$ where $f : \mathbb{R} \to \mathbb{R}$ is a continuous function.
- 4. Which of the following sets are a) open? b) closed?
 - (i) $\{0\}$ in an arbitrary normed space X,
 - (ii) The whole space X in an arbitrary normed space X,
 - (iii) $\{x : \text{there exists N such that } x_n = 0 \text{ for all } n > N\}$ in l_{∞} ,
 - (iv) $\{x: x_n \to 0\}$ in l_{∞} ,
 - (v) $\{f : f(1/2) = 0\}$ in C([0,1]) with the sup norm $\|\cdot\|_{\infty}$,
 - (vi) $\{f: \int_0^1 f = 0\}$ in C([0,1]) with the sup norm $\|\cdot\|_{\infty}$,
 - (vii) $\{f: f(1/2) = 0\}$ in C([0,1]) with the norm $\|\cdot\|_1$ defined in Q2,
 - (viii) $\{f: \int_0^1 f = 0\}$ in C([0,1]) with the norm $\|\cdot\|_1$.
- 5. Which of the following functions f are continuous?
 - (i) The linear map $f: l_{\infty} \to \mathbb{R}$ defined by $f(x) = \sum_{n=1}^{\infty} x_n/n^2$,
 - (ii) The identity map from $C([0,1], \|\cdot\|_{\infty})$ to $C([0,1], \|\cdot\|_1$ (where $\|f\|_1 = \int_0^1 |f|$ as in question 2)
 - (iii) The identity map from $C([0,1], \|\cdot\|_1)$ to $C([0,1], \|\cdot\|_\infty)$
 - (iv) Let c_{00} denote the subspace of l_{∞} consisting of all sequences with finitely many non zero terms. Define f to be the linear map $f(x) = \sum_{i=1}^{\infty} x_i$.

- 6. Let $\alpha \colon \mathbb{R}^n \to \mathbb{R}^m$ be a linear map, say given by $x \to Ax$ where A is an $m \times n$ matrix. Show that α is continuous.
- 7. Let $\alpha \colon \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Let

$$\|\alpha\| = \sup\{\|\alpha(\mathbf{x})\| : \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| \le 1\}.$$

Show that the function which sends α to $\|\alpha\|$ is a norm on the vector space $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ of all linear maps $\mathbb{R}^n \to \mathbb{R}^m$. [This is the *operator norm* on $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.] Show also that

 $\|\alpha\| = \sup\{\|\alpha(\mathbf{x})\| : \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| = 1\} = \sup\{\|\alpha(\mathbf{x})\| / \|\mathbf{x}\| : \mathbf{x} \in \mathbb{R}^n, \, \mathbf{x} \neq \mathbf{0}\}.$

- 8. Suppose that V and W are normed spaces and that $\alpha: V \to W$ is linear. Prove that $||x||' := ||x|| + ||\alpha(x)||$ is a norm on V. Hence, or otherwise, show that if V is finite dimensional then α is continuous.
- 9. In lectures we proved that if K is a closed and bounded set in \mathbb{R}^d , then any continuous function defined on K has bounded image. Prove the converse: if every continuous real-valued function on $K \subseteq \mathbb{R}^d$ is bounded, then K is closed and bounded.
- 10. Suppose that A, B are subsets of \mathbb{R}^n . Define the distance between A and B to be $d(A, B) = \inf_{a \in A, b \in B} d(a, b)$. Show that there exist disjoint closed subsets A, B of \mathbb{R} (or \mathbb{R}^2 if you prefer) with d(A, B) = 0. Show that this cannot happen if A is bounded.
- 11. Suppose that A in a subset of a normed space and that A has the Bolzano-Weierstrass property. Show that A is complete.
- 12. Show that the space l_{∞} is complete. Let $c_0 = \{x : x_n \to 0\}$ in l_{∞} . Show that c_0 is complete.
- 13. Suppose that $(x^{(n)})$ is a bounded sequence of vectors in l_{∞} . Show that there is a subsequence $x^{(n_i)}$ such that every coordinate is convergent: i.e., for every j the sequence $x_j^{(n_i)}$ of real numbers is convergent. Why does this not show that l_{∞} has the Bolzano-Weierstrass property?

Indeed, show that l_{∞} does not have the Bolzano-Weierstrass property.

- 14. Find a countable subset X of \mathbb{R} that is *dense*, that is meets every open subset of \mathbb{R} . Using uniform continuity or otherwise find a countable dense subset of C([0,1]) with the sup norm $\|\cdot\|_{\infty}$. Does there exist a countable dense subset of l_{∞} , the space of bounded real sequences with the sup norm?
- 15. A subset K of C([0,1]) is said to be equicontinuous if for all $x \in [0,1]$ and all $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ for all y with $|x - y| < \delta$ and for all $f \in K$. Prove that every sequence (f_n) in K has a convergent subsequence (in the sup norm $\|\cdot\|_{\infty}$) if and only if K is equicontinuous and bounded. (Note the subsequence is not required to converge to a function in K.)