
ANALYSIS II EXAMPLES 2

Michaelmas 2004 J. M. E. Hyland

Again this sheet contains Basic Questions which focus on the examinable component of the course,
together with Additional Questions for those wishing to take things further. The questions are
not equally difficult; most of the hardest are among the Additional Questions. The sheet is a
modification of Gabriel Paternain’s sheet from last year. Please send comments and corrections
(especially important for the new questions) to m.hyland@dpmms.cam.ac.uk.

1. Let α : Rn → Rm be a linear map. Show that

sup{‖α(x)‖ : x ∈ Rn, ‖x‖ ≤ 1} = inf{k ∈ R : k is a Lipschitz constant for α} .

Show that the function which sends α to the common value ‖α‖ of these two expressions is a norm on
the vector space L(Rn,Rm) of all linear maps Rn → Rm. [This is the operator norm on L(Rn,Rm).]
Show also that

‖α‖ = sup{‖α(x)‖ : x ∈ Rn, ‖x‖ = 1} = sup{‖α(x)‖/‖x‖ : x ∈ Rn, x 6= 0} .

2. Let `c be the space of all real sequences (xn)
∞

n=1 such that all but finitely many of the xn are
zero. With the natural (pointwise) addition and scalar multiplication `c is a vector space. Find two
norms in `c which are not Lipschitz equivalent, showing explicitly that they are norms. Can you
find uncountably many norms which are not Lipschitz equivalent?

3. Prove the following facts about convergence of sequences in an arbitrary normed space:
(i) If (xn)→ x and (yn)→ y, then (xn + yn)→ x+ y.
(ii) If (xn)→ x and λ ∈ R, then (λxn)→ λx.
(iii) If xn = x for all n ≥ n0, then (xn)→ x.
(iv) If (xn)→ x, then any subsequence (xni

) of (xn) also converges to x.

4. Which of the following subsets of R2 are (a) open, (b) closed? (And why?)

(i) {(x, 0) : 0 ≤ x ≤ 1} . (ii) {(x, 0) : 0 < x < 1} . (iii) {(x, y) : y 6= 0} .
(iv) {(x, y) : x ∈ Q or y ∈ Q} . (v) {(x, y) : xy = 1} .

5. Let E be a subset of Rn which is both open and closed. Show that E is either the whole of Rn or
the empty set. [Method: suppose for a contradiction that x ∈ E but y ∈ Rn \ E. Define a function
f : [0, 1] → R by setting f(t) = 1 if the point tx + (1 − t)y belongs to E, and f(t) = 0 otherwise;
now recall a suitable theorem from Analysis I.]

6. (i) Show that the mapping R2n → Rn which sends a 2n-dimensional vector

(x1, x2, . . . , xn, y1, y2, . . . , yn)

to

(x1 + y1, x2 + y2, . . . , xn + yn)

is continuous. Deduce that if f and g are continuous functions from E ⊆ Rn to Rm, then so is their
(pointwise) sum f + g.
(ii) By considering a suitable function Rn+1 → Rn, give a similar proof that if f is a continuous

Rm-valued function on E ⊆ Rn, and λ is a continuous real-valued function on E, then the pointwise
scalar product λf (i.e. the function whose value at x is λ(x).f(x)) is continuous on E.
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7. If A and B are subsets of Rn, we write A+B for the set {a+ b : a ∈ A, b ∈ B}. Show that if A
and B are both closed and one of them is bounded, then A + B is closed. Give an example in R1

to show that the boundedness condition cannot be omitted. If A and B are both open, is A + B
necessarily open? Justify your answer.

8. Let f : Rn → Rm, and let E,F be subsets of Rn and Rm respectively. Determine which of the
following statements are always true and which may be false, giving a proof or a counterexample as
appropriate. [N.B.: for the counterexamples, it suffices to take n = m = 1.]
(i) If f−1(F ) is closed whenever F is closed, then f is continuous.
(ii) If f is continuous, then f−1(F ) is closed whenever F is closed.
(iii) If f is continuous, then f(E) is open whenever E is open.
(iv) If f is continuous, then f(E) is bounded whenever E is bounded.
(v) If f(E) is bounded whenever E is bounded, then f is continuous.

9. In lectures we proved that if E is a closed and bounded set in Rn, then any continuous function
defined on E has bounded image. Prove the converse: if every continuous real-valued function on
E ⊆ Rn is bounded, then E is closed and bounded.
Now suppose that every bounded continuous real-valued function on E ⊆ Rn attains its bounds.
Does it again follow that E is closed and bounded?

10. Consider the vector space L(Rn,Rm) of all linear maps Rn → Rm, equipped with the operator
norm defined earlier.
(i) Show that if ‖α‖ < ε then all the entries in the matrix A representing α (with respect to the

standard bases of Rn and Rm) have absolute value less than ε. Conversely, show that if all entries
of the matrix A have absolute value less than ε, then the norm of the linear map α represented by
A is less than nmε.
(ii) Deduce that convergence for sequences of linear maps is equivalent to ‘entry-wise’ convergence

of the representing matrices, and so that L(Rn,Rm) is complete. How else might you prove this?
(iii) If α : Rn → Rm and β : Rm → Rp are linear maps, show that the norm of the composite

β ◦ α is less than or equal to the product ‖β‖.‖α‖.
(iv) Now specialize to the case n = m. Show that if α is an endomorphism of Rn satisfying

‖α‖ < 1, then the sequence whose kth term is ι+ α+ α2 + · · ·+ αk−1 converges (here ι denotes the
identity mapping), and deduce that ι− α is invertible.
(v) Deduce that if α is invertible then so is α−β whenever ‖β‖ < ‖α−1‖−1. Hence conclude that

the set of invertible linear maps is open in L(Rn,Rm).

11. Suppose that g : [0, 1] × [0, 1] → R is a continuous function. Show that one can define a map
G : C[0, 1]→ C[0, 1] by setting

(Gf)(x) =

∫ 1

0

g(x, t)f(t)dt

for f ∈ C[0, 1].
Show further that G : C[0, 1] → C[0, 1] is a linear map, and that G is a continuous map with

respect to the uniform (sup) norm. Is it continuous with respect to the L1 norm? (Can you justify
your answer?)

12. Recall from lectures the normed space `2. The Hilbert cube is the subset of `2 consisting of all
(xn)

∞

n=1 = (x1, x2, x3, · · · ) such that for each n, |xn| ≤ 1/n. Show that the Hilbert cube is closed in
`2, and that it has the Bolzano-Weierstrass property, that is, any sequence in the Hilbert cube has
a convergent subsequence in it. (So the Hilbert cube is compact).
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Additional Questions

13. Let R[0, 1] be the space of Riemann integrable functions on [0, 1].

(i) Why is R[0, 1] equipped with ‖f‖ =
∫ 1

0
|f(t)|dt not a normed space? What could you imagine

doing to remedy the situation?
(ii) Is R[0, 1] equipped with ‖f‖ = sup{|f(t)| : t ∈ [0, 1]} a normed space? Is it complete?

14. (i) Let Cb(R) be the space of continuous bounded functions f : R → R equipped with the
uniform (sup) norm. Show that Cb(R) is complete.
(ii) Let C0(R) be the subspace of continuous functions f : R → R such that f(x)→ 0 as |x| → ∞.

Is C0(R), equipped with the uniform norm, complete?
(iii) Let Cc(R) be the subspace of continuous functions f : R → R such that f(x) = 0 for |x|

sufficiently large. Is Cc(R), equipped with the uniform norm, complete?
15. Recall the normed space L(Rn,Rm) equipped with the operator norm. We now write the
elements of L(Rn,Rm) as matrices A, B, ... .
(i) Show that in the operator norm the sum

∞∑
r=0

Ar/r!

converges to a matrix (and so linear map) expA.
(ii) Show that if A and B commute, then exp(A+B) = expA expB.
(iii) What happens when A and B do not commute? (If you want to know more, look up the

Campbell-Hausdorff formula.)

16. Let T : E → F be a linear map between normed spaces. Prove that the following are equivalent.
(i) T is continuous.
(ii) T is continuous at 0.
(iii) There is 0 < K <∞ such that ‖T (x)‖ ≤ K‖x‖ for all x ∈ E.

In such circumstances, T is a bounded linear operator. (What is the moral of this equivalence?)
Let B(E,F ) be the space of bounded linear operators equipped with the operator norm ‖T‖ =

sup{‖T (x)‖ : x ∈ E and ‖x‖ ≤ 1}. Show that if F is complete then so is B(E,F ).

17. A special case of the space B(E,F ) of bounded linear operators gives the dual E∗ of a normed
space. It is defined to be E∗ = B(E,R), the space of bounded linear functionals with the operator
norm. Now recall from lectures the normed spaces `p, 1 ≤ p ≤ ∞.
(i) Show that the dual of `1 is isomorphic to `∞.
(ii) Show that the dual of `2 is isomorphic to `2.
Now let c0 = {(xn)

∞

n=1 : xn → 0 as n→∞}, equipped with the sup norm. Is c0 complete?
Identify the dual of c0. Is the dual of `

∞ isomorphic to `1?

18. Here is a different take on the relationship between `1 and `∞.
(i) Let (xi)

∞

i=1 be such that, for all (yi)
∞

i=1 ∈ `∞,
∑

i xiyi converges. Show that (xi)
∞

i=1 ∈ `1.
(ii) Let (yi)

∞

i=1 be such that, for all (xi)
∞

i=1 ∈ `1,
∑

i xiyi converges. Show that (xi)
∞

i=1 ∈ `∞.

(iii) Suppose that x(n) = (x
(n)
i )∞i=1 is a sequence in `

1 such that, for all (yi)
∞

i=1 ∈ `∞,
∑

i x
(n)
i yi → 0

as n→∞. Does x(n) → 0 in `1?
(iv) Suppose that y(n) = (y

(n)
i )∞i=1 is a sequence in `

∞ such that, for all (xi)
∞

i=1 ∈ `1,
∑

i xiy
(n)
i → 0

as n→∞. Does y(n) → 0 in `∞?

19. Suppose that E is a normed space in which the unit ball {x : ‖x‖ ≤ 1} is compact (in the sense
that the Bolzano-Weierstrass Theorem holds for it). Show that E is finite dimensional.

20. Let E be a normed space. Can there exist bounded linear operators S, T : E → E such that
S ◦ T − T ◦ S = I where I : E → E is the identity?


