
ANALYSIS II EXAMPLES 1

Michaelmas 2004 J. M. E. Hyland

This sheet contains Basic Questions, which focus on the examinable component of the course, to-
gether with Additional Questions for those wishing to take things further. The questions are not all
equally difficult; I have tried to ensure that the hardest appear amongst the Additional Questions.
The sheet is a modification of Gabriel Paternain’s sheet from last year. I welcome comments and
corrections which can be sent to m.hyland@dpmms.cam.ac.uk.

Basic Questions

1. Define fn : [0, 2]→ R by

fn(x) = 1− n|x− n−1| for |x− n−1| ≤ n−1,

fn(x) = 0 otherwise.

Show that the fn are continuous and sketch their graphs. Show that fn converges pointwise on [0, 2]
to the zero function but not uniformly.

2. Suppose that f : [0, 1]→ R is continuous. Show that the sequence xnf(x) is uniformly convergent
on [0, 1] if and only if f(1) = 0.

3. Consider the sequence of functions

fn(x) =
x

1 + nx2
.

(i) Show that fn is uniformly convergent on (−∞,∞).

(ii) Is f ′n uniformly convergent on [0, 1]?

(iii) What are limn→∞ f ′n(x) and (limn→∞ fn)
′(x)?

4. Let f and g be uniformly continuous real-valued functions on a set E.
(i) Show that the (pointwise) sum f + g is uniformly continuous on E, as also is λf for any real

constant λ.
(ii) Is the product fg necessarily uniformly continuous on E? Give a proof or counter-example

as appropriate.

5. Which of the following functions f are (a) uniformly continuous, (b) bounded on [0,∞)?
(i) f(x) = sin x2.
(ii) f(x) = inf{|x− n2| : n ∈ N}.
(iii) f(x) = (sin x3)/(x+ 1).

6. (i) Show that if (fn) is a sequence of uniformly continuous functions on R, and fn → f uniformly
on R, then f is uniformly continuous.
(ii) Give an example of a sequence of uniformly continuous functions fn on R, such that fn

converges pointwise to a continuous function f , but f is not uniformly continuous. [Hint: choose
the limit function f first, and then take the fn to be a sequence of ‘approximations’ to it.]

7. Suppose that f is continuous on [0,∞) and that f(x) tends to a (finite) limit as x → ∞. Is f
necessarily uniformly continuous on [0,∞)? Give a proof or a counterexample as appropriate.
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8. Consider the functions fn : [0, 1] → R defined by fn(x) = npx exp(−nqx) where p, q are positive
constants.
(i) Show that fn converges pointwise on [0, 1], for any p and q.
(ii) Show that if p < q then fn converges uniformly on [0, 1].
(iii) Show that if p ≥ q then fn does not converge uniformly on [0, 1]. Does fn converge uniformly

on [0, 1−ε]? Does fn converge uniformly on [ε, 1]? [Here 0 < ε < 1; you should justify your answers.]

9. Let fn(x) = nαxn(1− x), where α is a real constant.
(i) For which values of α does fn(x)→ 0 pointwise on [0, 1]?
(ii) For which values of α does fn(x)→ 0 uniformly on [0, 1]?

(iii) For which values of α does
∫ 1

0
fn(x) dx→ 0?

(iv) For which values of α does f ′n(x)→ 0 pointwise on [0, 1]?
(v) For which values of α does f ′n(x)→ 0 uniformly on [0, 1]?

10. Consider the sequence of functions fn : (R \ Z)→ R defined by

fn(x) =

n
∑

m=0

(x−m)−2 .

(i) Show that fn converges pointwise on R \ Z to a function f .
(ii) Show that fn does not converge uniformly on R \ Z.
(iii) Why can we nevertheless conclude that the limit function f is continuous, and indeed differ-

entiable, on R \ Z?

11. Suppose fn is a sequence of continuous functions from a bounded closed interval [a, b] to R, and
that fn converges pointwise to a continuous function f .
(i) If fn converges uniformly to f , and (xm) is a sequence of points of [a, b] converging to a limit

x, show that fn(xn)→ f(x). [Careful — this is not quite as easy as it looks!]
(ii) If fn does not converge uniformly, show that we can find a convergent sequence xn → x in

[a, b] such that fn(xn) does not converge to f(x). [Hint: Bolzano–Weierstrass.]

12. (i) Suppose f is defined and differentiable on a (bounded or unbounded) interval E ⊆ R, and
that its derivative f ′ is bounded on E. Use the Mean Value Theorem to show that f is uniformly
continuous on E.
(ii) Give an example of a function f which is (uniformly) continuous on [0, 1], and differentiable at

every point of [0, 1] (here we interpret f ′(0) as the ‘one-sided derivative’ limh→0+((f(h)− f(0))/h),
and similarly for f ′(1)), but such that f ′ is unbounded on [0, 1]. [Hint: last year you probably saw
an example of an everywhere differentiable function whose derivative is discontinuous; you will need
to ‘tweak’ it slightly.]

Additional Questions

13. Let f be a bounded function defined on a set E ⊆ R, and for each positive integer n let gn be
the function defined on E by

gn(x) = sup{|f(y)− f(x)| : y ∈ E, |y − x| < 1/n} .

Show that f is uniformly continuous on E if and only if gn → 0 uniformly on E as n→∞.

14. Show that the series

ζ(s) =
∞
∑

n=1

1/ns

converges for s > 1, and is uniformly convergent on [1 + ε,∞) for any ε > 0.

Show that ζ is differentiable on (1,∞). (First think what its derivative ought to be!)
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15. (Dirichlet’s Test) Let fn and gn be real-valued functions on the interval [a, b]. Suppose that for

x ∈ [a, b], |
∑N

0
fn(x)| ≤ K, where K is constant, for all N ; and suppose that gn(x) is monotonic

for each x ∈ [a, b] with gn → 0 uniformly on [a, b]. Show that the sum
∑∞

0
fn(x)gn(x) is uniformly

convergent on [a, b].

16. (i) (Abel’s Test) Let fn and gn be real-valued functions on [a, b]. Suppose that
∑∞

0
fn(x) is

uniformly convergent on [a, b], that each gn(x) is bounded on [a, b], and that gn(x) ≥ gn+1(x) ≥ 0
for all x ∈ [a, b]. Show that the sum

∑∞

0
fn(x)gn(x) is uniformly convergent on [a, b].

(ii) Deduce that if
∑∞

0
an is convergent, then

∑∞

0
anx

n is uniformly convergent on [0, 1]. (But note
that

∑∞

0
anx

n need not be convergent at −1; you almost certainly know a counterexample!)

17. Suppose that gn are continuous functions with gn(x) ≥ gn+1(x) for all x ∈ R, and with gn → 0
uniformly in R.
(i) Show that both

∑∞

n=0
gn(x) cosnx and

∑∞

n=0
gn(x) sinnx converge uniformly on any interval of

the form [δ, 2π − δ], where δ > 0.

(ii) Give an example to show that we do not necessarily have convergence uniformly on [0, 2π].

18. Let fn : [0, 1] → R be a sequence of continuous functions converging pointwise to a continuous
function f : [0, 1] → R on the unit interval [0, 1]. Suppose that fn(x) is a decreasing sequence for
each x ∈ [0, 1]. Show that fn → f uniformly on [0, 1].

19. Define ϕ(x) = |x| for x ∈ [−1, 1] and extend the definition of ϕ(x) to all real x by requiring that

ϕ(x+ 2) = ϕ(x).

(i) Show that |ϕ(s)− ϕ(t)| ≤ |s− t| for all s and t.

(ii) Define f(x) =
∑∞

n=0

(

3

4

)n
ϕ(4nx). Prove that f is well defined and continuous.

(iii) Fix a real number x and positive integer m. Put δm = ±
1

2
4−m where the sign is so chosen

that no integer lies between 4mx and 4m(x+ δm). Prove that
∣

∣

∣

∣

f(x+ δm)− f(x)

δm

∣

∣

∣

∣

≥
1

2
(3m + 1).

Conclude that f is not differentiable at x. Hence there exists a real continuous function on the real
line which is nowhere differentiable.

20. A space-filling curve (Exercise 14, Chapter 7 of Rudin’s book). Let f be a continuous real
function on R with the following properties: 0 ≤ f(t) ≤ 1, f(t+ 2) = f(t) for every t, and

f(t) =

{

0 for t ∈ [0, 1/3];
1 for t ∈ [2/3, 1].

Put Φ(t) = (x(t), y(t)), where

x(t) =
∞
∑

n=1

2−nf(32n−1t), y(t) =
∞
∑

n=1

2−nf(32nt).

Prove that Φ is continuous and that Φ maps I = [0, 1] onto the unit square I2 ⊂ R2. In fact, show
that Φ maps the Cantor set onto I2.

Hint: Each (x0, y0) ∈ I2 has the form

x0 =

∞
∑

n=1

2−na2n−1, y0 =

∞
∑

n=1

2−na2n

where each ai is 0 or 1. If

t0 =

∞
∑

i=1

3−i−1(2ai)

show that f(3kt0) = ak, and hence that x(t0) = x0, y(t0) = y0.


