- 1. How many subsets of $\{1, 2, 3, 4\}$ have even size? Based on your answer, guess and prove a formula for the number of subsets of $\{1, 2, ..., n\}$ of even size.
- 2. Prove that if p is prime and $1 \le k \le p-1$ then $\binom{p}{k}$ is a multiple of p. Give two proofs: one based on the formula and one based on looking at the k-subsets of \mathbb{Z}_p .
- 3. The symmetric difference of sets A and B is $A \triangle B = (A \setminus B) \cup (B \setminus A)$. Give two proofs that the operation \triangle is associative: one directly and one based on indicator functions mod 2.
- 4. Use the inclusion-exclusion principle to determine $\phi(1001)$.
- 5. Let A_1, A_2, \ldots be sets such that for each n we have $A_1 \cap \ldots \cap A_n \neq \emptyset$. Can we have $A_1 \cap A_2 \cap \ldots = \emptyset$?
- 6. Does $f \circ g$ injective imply f injective? Does it imply g injective? What happens if we replace 'injective' with 'surjective'?
- 7. Find an injection from \mathbb{R}^2 to \mathbb{R} . Is there an injection from the set of all real sequences to \mathbb{R} ?
- 8. Define a relation R on \mathbb{N} by setting aRb if a divides b or b divides a. Is R an equivalence relation?
- 9. Show that there does not exist an uncountable family of pairwise disjoint discs in the plane. What happens if we replace 'discs' by 'circles'?
- 10. Show that the collection of all finite subsets of \mathbb{N} is countable. What goes wrong if we try to use the diagonal argument to show that it is uncountable?
- 11. A function $f: \mathbb{N} \to \mathbb{N}$ is increasing if $f(n+1) \geq f(n)$ for all n and decreasing if $f(n+1) \leq f(n)$ for all n. Is the set of increasing functions countable or uncountable? What about the set of decreasing functions?
- 12. Let S be a collection of subsets of $\mathbb N$ such that for every $A,B\in S$ we have $A\subset B$ or $B\subset A$. Can S be uncountable?
- 13. Find a bijection from the rationals to the non-zero rationals. Is there such a bijection that is order-preserving (ie. x < y implies f(x) < f(y))?
- 14. Construct a function $f: \mathbb{R} \to \mathbb{R}$ that takes every value on every interval in other words, for every a < b and every c there is an x with a < x < b such that f(x) = c.
- $^+15$. Let $d \le n$ be positive integers, with d even. How many subsets of $\{1, 2, \ldots, n\}$ can we find such that any two have symmetric difference of size at most d?