1. Find the highest common factor of 12345 and 54321.
2. Find integers x and y with $76 x+45 y=1$. Do there exist integers x and y with $3381 x+2646 y=21$?
3. Prove that if a is coprime to b and also to c then it is coprime to $b c$. Give two proofs: one based on Euclid's algorithm / Bezout's theorem and one based on prime factorisation.
4. Is it true that for all positive integers a, b, c, d we have $(a, b)(c, d)=(a c, b d)$?
5. Show that a positive integer n is a multiple of 9 if and only if the sum of its digits is a multiple of 9 .
6. The Fibonacci numbers $F_{1}, F_{2}, F_{3}, \ldots$ are defined by: $F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+$ F_{n-2} for all $n>2$ (so eg. $F_{3}=2, F_{4}=3, F_{5}=5$). Is F_{2019} even or odd? Is it a multiple of 3 ?
7. Solve (ie. find all solutions of) the equations
(i) $7 x \equiv 77$ (40)
(ii) $12 y \equiv 30(54)$
(iii) $3 z \equiv 2$ (17) and $4 z \equiv 3$ (19).
8. An RSA encryption scheme (n, e) has modulus $n=187$ and coding exponent $e=7$. By prime-factorising n, find a suitable decoding exponent d. Check your answer (without electronic assistance) by encoding the number 35 and then decoding the result.
9. Explain (without electronic assistance) why 23 cannot divide $10^{881}-1$.
10. Let p be a prime of the form $3 k+2$. Show that, in \mathbb{Z}_{p}, the only solution to $x^{3}=1$ is $x=1$. Deduce, or prove directly, that every element of \mathbb{Z}_{p} has a cube root.
11. By considering numbers of the form $\left(2 p_{1} p_{2} \ldots p_{k}\right)^{2}+1$, prove that there are infinitely many primes of the form $4 n+1$.
12. What is the 5 th-last digit of $5^{5^{5^{5}}}$?
13. Show that 19^{19} is not the sum of a fourth power and a (positive or negative) cube.
14. Let a and b be distinct positive integers, with say $a<b$. Prove that every block of b consecutive positive integers contains two distinct numbers whose product is a multiple of $a b$. If a, b and c are distinct positive integers, with say $a<b<c$, must every block of c consecutive positive integers contains three distinct numbers whose product is a multiple of $a b c$?
${ }^{+} 15$. Let n and k be positive integers. Suppose that n is a k th power $(\bmod p)$ for all primes p. Must n be a k th power?
