

1. Prove carefully, using the least upper bound axiom, that there is a real number x satisfying $x^3 = 2$. Prove also that such an x must be irrational.
2. Prove that $\sqrt{2} + \sqrt{3}$ is irrational and algebraic.
3. Suppose that the real number x is a root of a monic integer polynomial, ie. we have $x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0 = 0$, for some integers a_{n-1}, \dots, a_0 . Prove that x is either integer or irrational.
4. Let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ be sequences of reals. Show that if $x_n \rightarrow 0$ and $x_n \rightarrow 0$ then $x_n y_n \rightarrow 0$. By considering $x_n - c$ and $y_n - d$, prove carefully that if $x_n \rightarrow c$ and $y_n \rightarrow d$ then $x_n y_n \rightarrow cd$.
5. Let $(x_n)_{n=1}^{\infty}$ be a sequence of reals. Show that if $(x_n)_{n=1}^{\infty}$ is convergent then we must have $x_n - x_{n-1} \rightarrow 0$. If $x_n - x_{n-1} \rightarrow 0$, must $(x_n)_{n=1}^{\infty}$ be convergent?
6. Which of the following sequences $(x_n)_{n=1}^{\infty}$ converge?
 - (i) $x_n = \frac{3n}{n+3}$,
 - (ii) $x_n = \frac{n^{100}}{2^n}$,
 - (iii) $x_n = \sqrt{n+1} - \sqrt{n}$,
 - (iv) $x_n = (n!)^{1/n}$.
7. Which of the following series converge?
 - (i) $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$,
 - (ii) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$,
 - (iii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+n}}$.
8. Define a sequence $(x_n)_{n=1}^{\infty}$ by setting $x_1 = 1$ and $x_{n+1} = \frac{x_n}{1+\sqrt{x_n}}$ for all $n \geq 1$. Show that $(x_n)_{n=1}^{\infty}$ converges, and determine its limit.
9. A real number $x = 0 \cdot x_1 x_2 x_3 \dots$ is called *repetitive* if its decimal expansion contains arbitrarily long blocks that are the same, ie. if for every k there exist distinct m and n such that $x_m = x_n$, $x_{m+1} = x_{n+1}$, \dots , $x_{m+k} = x_{n+k}$. Prove that the square of a repetitive number is repetitive.
10. Show that if $\sum_{n=1}^{\infty} x_n$ is a convergent series of reals, with all x_n positive, then $\sum_{n=1}^{\infty} x_n^2$ is also convergent. What happens if we do not insist that the x_n are positive?
11. If $\sum_{n=1}^{\infty} x_n$ is a convergent series of reals, must $\sum_{n=1}^{\infty} x_n^3$ be convergent?
12. Show that $\sqrt[100]{\sqrt{3} + \sqrt{2}} + \sqrt[100]{\sqrt{3} - \sqrt{2}}$ is irrational.
13. Let $(x_n)_{n=1}^{\infty}$ be a real sequence with $x_n \rightarrow 0$. Prove carefully that we may choose $(\epsilon_n)_{n=1}^{\infty}$, with each $\epsilon_n = \pm 1$, such that $\sum_{n=1}^{\infty} \epsilon_n x_n$ is convergent. If $(y_n)_{n=1}^{\infty}$ is another real sequence tending to 0, can we choose the ϵ_n so that $\sum_{n=1}^{\infty} \epsilon_n y_n$ is convergent as well?
- +14. Let S be a (possibly infinite) set of odd positive integers. Prove that there exists a real sequence $(x_n)_{n=1}^{\infty}$ such that, for each positive integer k , the series $\sum_{n=1}^{\infty} x_n^k$ converges when k belongs to S and diverges when k does not belong to S .