Numbers and Sets: Examples Sheet 2 of 4

1. Find integers x and y with $76 x+45 y=1$. Do there exist integers x and y with $3381 x+2646 y=$ 21?
2. Let $a, b, c, d \in \mathbb{N}$. Must the numbers $(a, b)(c, d)$ and $(a c, b d)$ be equal? If not, must one be a factor of the other? If $(a, b)=(a, c)=1$, must we have $(a, b c)=1$?
3. Show that a positive integer n is a multiple of 9 if and only if the sum of its digits is a multiple of 9 . The number 2^{29} has nine distinct digits. Which digit is missing?
4. The Fibonacci numbers $F_{1}, F_{2}, F_{3}, \ldots$ are defined by: $F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for all $n>2$ (so eg. $F_{3}=2, F_{4}=3, F_{5}=5$). Is F_{2023} even or odd? Is it a multiple of 3 ?
5. Solve (i.e. find all solutions of) the equations
(i) $7 x \equiv 77 \bmod 40$;
(ii) $12 y \equiv 30 \bmod 54$;
(iii) $3 z \equiv 2 \bmod 17$ and $4 z \equiv 3 \bmod 19$.
6. An RSA encryption scheme (n, e) has modulus $n=187$ and encoding exponent $e=7$. Find a suitable decoding exponent d. Check your answer (without electronic assistance) by explicitly encoding the number 35 and then decoding the result.
7. By considering the n fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$ or otherwise, prove that $n=\sum_{d \mid n} \phi(d)$.
8. Explain (without electronic assistance) why 23 cannot divide $10^{881}-1$.
9. Let p be a prime of the form $3 k+2$. Show that if $x^{3} \equiv 1 \bmod p$, then $x \equiv 1 \bmod p$. Deduce that every number is a cube modulo p, that is, $y^{3} \equiv a \bmod p$ has an integer solution y for all $a \in \mathbb{Z}$.
10. By considering numbers of the form $\left(2 p_{1} p_{2} \ldots p_{k}\right)^{2}+1$, prove that there are infinitely many primes of the form $4 n+1$.
11. What is the 5th-last digit of $5^{5^{5^{5}}}$?
12. Is there a positive integer n for which $n^{7}-77$ is a Fibonacci number?
${ }^{+}$13. Let p be a prime. Show that for every set of $2 p-1$ integers, one can choose a subset of size p whose sum is divisible by p. Is the same true when the prime p is replaced by a composite integer n ?
${ }^{+}$14. Let n and k be positive integers. Suppose that n is a k th power modulo p for all primes p. Must n be a k th power?
