1. Define a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ by setting $x_{1}=1$ and $x_{n+1}=\frac{x_{n}}{1+\sqrt{x_{n}}}$ for all $n \geq 1$. Show that $\left(x_{n}\right)_{n=1}^{\infty}$ converges, and determine its limit.
2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of reals. Show that if $\left(a_{n}\right)_{n=1}^{\infty}$ is convergent then we must have $a_{n}-a_{n-1} \rightarrow 0$. If $a_{n}-a_{n-1} \rightarrow 0$, must $\left(a_{n}\right)_{n=1}^{\infty}$ be convergent?
3. Let $\left[a_{n}, b_{n}\right], n=1,2, \ldots$, be closed intervals with $\left[a_{n}, b_{n}\right] \cap\left[a_{m}, b_{m}\right] \neq \emptyset$ for all n, m. Prove that $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \neq \emptyset$.
4. Which of the following sequences $\left(x_{n}\right)_{n=1}^{\infty}$ converge?

$$
x_{n}=\frac{3 n}{n+3} \quad x_{n}=\frac{n^{100}}{2^{n}} \quad x_{n}=\sqrt{n+1}-\sqrt{n} \quad x_{n}=(n!)^{1 / n}
$$

5. Which of the following series converge?

$$
\sum_{n=1}^{\infty} \frac{1}{1+n^{2}} \quad \sum_{n=1}^{\infty} \frac{n!}{n^{n}} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+n}} \quad \sum_{n=1}^{*^{*}} \frac{1}{n}
$$

In the last case, the $*$ means omit all values of n which, when written in base 10 , have some digit equal to 7 .
6. Let $a_{n} \in \mathbb{R}$ and let $b_{n}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$. Show that, if $a_{n} \rightarrow a$ as $n \rightarrow \infty$, then $b_{n} \rightarrow a$ also.
7. Let $\sum_{n=1}^{\infty} x_{n}$ be a divergent series, where $x_{n}>0$ for all n. Show that there is a divergent series $\sum_{n=1}^{\infty} y_{n}$ with $y_{n}>0$ for all n, such that $y_{n} / x_{n} \rightarrow 0$.
8. Let $\sum_{n=1}^{\infty} x_{n}$ be convergent. If $x_{n}>0$ for all n, show that $\sum_{n=1}^{\infty} x_{n}^{2}$ also converges. What if sometimes $x_{n}<0$? What are the corresponding answers for $\sum_{n=1}^{\infty} x_{n}^{3}$?
9. Show that any collection of pairwise disjoint discs in the plane is countable. What happens if we replace 'discs' by 'circles'?
10. Let \mathcal{F} be the set of all finite subsets of \mathbb{N}. Is \mathcal{F} countable?
11. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing if $f(n+1) \geq f(n)$ for all n and decreasing if $f(n+1) \leq f(n)$ for all n. Is the set of increasing functions countable or uncountable? What about the set of decreasing functions?
12. Find an injection $\mathbb{R}^{2} \rightarrow \mathbb{R}$. Is there an injection from the set of all real sequences to \mathbb{R} ?
13. Let $S \subset \mathcal{P N}$ be such that if $A, B \in S$ then $A \subset B$ or $B \subset A$. Can S be uncountable? Is there an uncountable family $T \subset \mathcal{P} \mathbb{N}$ such that $A \cap B$ is finite for all distinct $A, B \in T$?
14. For each $x \in \mathbb{R}$ we are given an interval $I_{x}=\left[x-\delta_{x}, x+\delta_{x}\right]$ with $\delta_{x} \geq 0$. Moreover, for each $x, y \in \mathbb{R}$ with $y \in I_{x}$, we have $\delta_{y}<\delta_{x}$. Show that $\delta_{x}=0$ for uncountably many x.
*15. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a real sequence with $x_{n} \rightarrow 0$. Prove carefully that we may choose $\left(\epsilon_{n}\right)_{n=1}^{\infty}$, with each $\epsilon_{n}= \pm 1$, such that $\sum_{n=1}^{\infty} \epsilon_{n} x_{n}$ is convergent. If $\left(y_{n}\right)_{n=1}^{\infty}$ is another real sequence tending to 0 , can we choose the ϵ_{n} so that $\sum_{n=1}^{\infty} \epsilon_{n} y_{n}$ is convergent as well?

* 16. Is there an enumeration of \mathbb{Q} as $q_{1}, q_{2}, q_{3}, \ldots$ such that $\sum\left(q_{n}-q_{n+1}\right)^{2}$ converges?

