1. Does $3381 x+2646 y=21$ have an integer solution? Find the convergents to $\frac{152}{90}$. Find an integer solution to $152 u+90 v=2$. Find all such solutions.
2. Let $a, b, c, d \in \mathbb{N}$. Must the numbers $(a, b)(c, d)$ and $(a c, b d)$ be equal? If not, must one be a factor of the other? If $(a, b)=(a, c)=1$, must we have $(a, b c)=1$?
3. Find integers x, y and z such that $56 x+63 y+72 z=1$.
4. Show that a number is divisible by 9 if, and only if, the sum of its digits is divisible by 9 .
5. The Fibonacci numbers $F_{0}, F_{1}, F_{2} \ldots$ are defined by $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+$ F_{n-2} for all $n \geq 2$. Is F_{2018} even or odd? Is it a multiple of 3 ?
Show (by induction on k or otherwise) that $F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n}$ for $k \geq 1$. Deduce that $\left(F_{m}, F_{n}\right)=\left(F_{m-n}, F_{n}\right)$, and thence that $\left(F_{m}, F_{n}\right)=F_{(m, n)}$.
6. Solve (i.e., find all solutions to) these congruences:-
(i) $77 x \equiv 11 \quad(\bmod 40)$,
(ii) $12 y \equiv 30(\bmod 54)$,
(iii) $z \equiv 13 \quad(\bmod 21) \quad$ and $3 z \equiv 2(\bmod 17) \quad$ simultaneously.
7. Without using a calculator, evaluate $20!21^{20}(\bmod 23)$ and $17^{10000}(\bmod 30)$.
8. By considering the n fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$, or otherwise, prove that $n=\sum_{d \mid n} \varphi(d)$.
9. An RSA encryption scheme (n, e) has modulus $n=187$ and encoding exponent $e=7$. Find a suitable decoding exponent d. Check your answer by encoding the number 35 and then decoding the result. (Remember, no calculators!)
10. Do there exist 100 consecutive natural numbers, each of which has a proper square factor?
11. Let p be a prime of the form $3 k+2$. Show that if $x^{3} \equiv 1(\bmod p)$ then $x \equiv 1(\bmod p)$. Deduce that every number is a cube $(\bmod p)$: i.e., $y^{3} \equiv a(\bmod p)$ is soluble for all $a \in \mathbb{Z}$. Is the same ever true if p is of the form $3 k+1$?
12. The repeat of a natural number is obtained by writing it twice in a row (for example, the repeat of 356 is 356356). Is there a number whose repeat is a perfect square?
13. Is there a positive integer n for which $n^{7}-77$ is a Fibonacci number?

* 14. Let $a<b$ be distinct natural numbers. Prove that every block of b consecutive natural numbers contains two distinct numbers whose product is divisible by $a b$. Suppose now $a<b<c$. Must every block of c consecutive numbers contain three distinct numbers whose product is divisible by $a b c$?

