1. Using the least upper bound axiom, prove that there is a real number x satisfying $x^{3}=2$.
2. Prove that $\sqrt{2}+\sqrt{3}$ is irrational and algebraic. Do the same for $2^{1 / 3}+2^{2 / 3}$.
3. Suppose that $x \in \mathbb{R}$ and $x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}=0$, where $a_{n-1}, \ldots, a_{0} \in$ \mathbb{Z}. Prove that either x is an integer or it is irrational.
4. Define a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ by setting $x_{1}=1$ and $x_{n+1}=\frac{x_{n}}{1+\sqrt{x_{n}}}$ for all $n \geq 1$. Show that $\left(x_{n}\right)_{n=1}^{\infty}$ converges, and determine its limit.
5. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of reals. Show that if $\left(a_{n}\right)_{n=1}^{\infty}$ is convergent then we must have $a_{n}-a_{n-1} \rightarrow 0$. If $a_{n}-a_{n-1} \rightarrow 0$, must $\left(a_{n}\right)_{n=1}^{\infty}$ be convergent?
6. Which of the following sequences $\left(x_{n}\right)_{n=1}^{\infty}$ converge?

$$
x_{n}=\frac{3 n}{n+3} \quad x_{n}=\frac{n^{100}}{2^{n}} \quad x_{n}=\sqrt{n+1}-\sqrt{n} \quad x_{n}=(n!)^{1 / n}
$$

7. Which of the following series converge?

$$
\sum_{n=1}^{\infty} \frac{1}{1+n^{2}} \quad \sum_{n=1}^{\infty} \frac{n!}{n^{n}} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+n}} \quad \sum_{n=1}^{\infty} \frac{1}{n}
$$

In the last case, the $*$ means omit all values of n which, when written in base 10 , have some digit equal to 7 .
8. Let $a_{n} \in \mathbb{R}$ and let $b_{n}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$. Show that, if $a_{n} \rightarrow a$ as $n \rightarrow \infty$, then $b_{n} \rightarrow a$ also.
9. Let $\sum_{n=1}^{\infty} x_{n}$ be a divergent series, where $x_{n}>0$ for all n. Show that there is a divergent series $\sum_{n=1}^{\infty} y_{n}$ with $y_{n}>0$ for all n, such that $y_{n} / x_{n} \rightarrow 0$.
10. A real number $r=0 \cdot d_{1} d_{2} d_{3} \ldots$ is called repetitive if its decimal expansion contains arbitrarily long blocks that are the same; that is, for every k there exist distinct m and n such that $d_{m}=d_{n}, d_{m+1}=d_{n+1}, \ldots, d_{m+k}=d_{n+k}$. Prove that the square of a repetitive number is repetitive.
11. Show that $\sqrt[100]{\sqrt{3}+\sqrt{2}}+\sqrt[100]{\sqrt{3}-\sqrt{2}}$ is irrational.
12. Let $\sum_{n=1}^{\infty} x_{n}$ be convergent. If $x_{n}>0$ for all n, show that $\sum_{n=1}^{\infty} x_{n}^{2}$ also converges. What if sometimes $x_{n}<0$? What are the corresponding answers for $\sum_{n=1}^{\infty} x_{n}^{3}$?
13. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes every value on every interval - in other words, for every $a<b$ and every c there is an x with $a<x<b$ such that $f(x)=c$.

