1. Prove carefully, using the least upper bound axiom, that there is a real number x satisfying $x^{3}=2$. Prove also that such an x must be irrational.
2. Prove that $\sqrt{2}+\sqrt{3}$ is irrational and algebraic.
3. Prove that $\log _{2} 3$ is irrational.
4. Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be sequences of reals. Show that if $x_{n} \rightarrow 0$ and $y_{n} \rightarrow 0$ then $x_{n} y_{n} \rightarrow 0$. By considering $x_{n}-c$ and $y_{n}-d$, prove carefully that if $x_{n} \rightarrow c$ and $y_{n} \rightarrow d$ then $x_{n} y_{n} \rightarrow c d$.
5. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a convergent sequence of real numbers, and suppose there is a real number M such that for all n we have $x_{n} \leqslant M$. Prove that $\lim x_{n} \leqslant M$. If $x_{n}<M$ for all n, must we have $\lim x_{n}<M$?
6. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of reals. Show that if $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent then $x_{n}-x_{n-1} \rightarrow 0$. If $x_{n}-x_{n-1} \rightarrow 0$, must $\left(x_{n}\right)_{n=1}^{\infty}$ be convergent?
7. Which of the following sequences $\left(x_{n}\right)_{n=1}^{\infty}$ converge?
(a) $x_{n}=\frac{3 n}{n+3}$;
(b) $x_{n}=\frac{n^{100}}{2^{n}}$;
(c) $x_{n}=\sqrt{n+1}-\sqrt{n}$;
(d) $x_{n}=(n!)^{1 / n}$.
8. Which of the following series converge?
(a) $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$;
(b) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$;
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+n}}$.
9. Let $\sum_{n=1}^{\infty} x_{n}$ be a divergent series with $x_{n}>0$ for all n. Show that there is a divergent series $\sum_{n=1}^{\infty} y_{n}$ with $y_{n}>0$ for all n and $y_{n} / x_{n} \rightarrow 0$.
10. Show that it $\sum_{n=1}^{\infty} x_{n}$ is a convergent series of positive real numbers then $\sum_{n=1}^{\infty} x_{n}^{2}$ is also convergent. What happens if we do not insist that the x_{n} be positive?
11. If $\sum_{n=1}^{\infty} x_{n}$ is a convergent series of reals, must $\sum_{n=1}^{\infty} x_{n}^{3}$ be convergent?
12. Show that $\sqrt[100]{\sqrt{3}+\sqrt{2}}+\sqrt[100]{\sqrt{3}-\sqrt{2}}$ is irrational.
