1. Show that a number is divisible by 9 if, and only if, the sum of its digits is divisible by 9 .
2. The Fibonacci numbers $F_{0}, F_{1}, F_{2} \ldots$ are defined by $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+$ F_{n-2} for all $n \geq 2$. Is F_{2015} even or odd? Is it a multiple of 3 ?
Show (by induction on k or otherwise) that $F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n}$ for $k \geq 1$. Deduce that $\left(F_{m}, F_{n}\right)=\left(F_{m-n}, F_{n}\right)$, and thence that $\left(F_{m}, F_{n}\right)=F_{(m, n)}$.
3. Solve (i.e., find all solutions of) these congruences:-
(i) $77 x \equiv 11 \quad(\bmod 40)$,
(ii) $12 y \equiv 30(\bmod 54)$,
(iii) $z \equiv 13 \quad(\bmod 21) \quad$ and $3 z \equiv 2(\bmod 17) \quad$ simultaneously.
4. Do there exist 100 consecutive natural numbers, each of which has a proper square factor?
5. Without using a calculator, evaluate $20!21^{20}(\bmod 23)$ and $17^{10000}(\bmod 30)$.
6. By considering the n fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$, or otherwise, prove that $n=\sum_{d \mid n} \varphi(d)$.
7. An RSA encryption scheme (n, e) has modulus $n=187$ and encoding exponent $e=7$. Find a suitable decoding exponent d. Check your answer by encoding the number 35 and then decoding the result. (Remember, no calculators!)
8. Let p be a prime of the form $3 k+2$. Show that if $x^{3} \equiv 1(\bmod p)$ then $x \equiv 1(\bmod p)$. Deduce that every number is a cube $(\bmod p)$: i.e., $y^{3} \equiv a(\bmod p)$ is soluble for all $a \in \mathbb{Z}$. Is the same ever true if p is of the form $3 k+1$?
9. Let A be a set of n positive integers. Show that every sequence of 2^{n} numbers taken from A contains a consecutive block of numbers whose product is a square. (For instance, $2,5,3,2,5,2,3,5$ contains the block $5,3,2,5,2,3$.)
10. Use the inclusion-exclusion principle to count the number of primes less than 121.
11. How many subsets of $\{1,2, \ldots, n\}$ are there of even size?
12. By suitably interpreting each side, or otherwise, establish the identities

$$
\begin{gathered}
\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\cdots+\binom{n-1}{k}+\binom{n}{k}=\binom{n+1}{k+1} \\
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
\end{gathered}
$$

13. Show that $a^{3}+b^{5}=7^{7^{7^{7}}}$ has no solution with $a, b \in \mathbb{Z}$.
14. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes every value on every interval - in other words, for every $a<b$ and every c there is an x with $a<x<b$ such that $f(x)=c$.
