1. For which $n \in \mathbb{N}$, if any, are three numbers of the form $n, n+2, n+4$ all prime?
2. Between 0 and 10 there are four primes. Another example of two consecutive multiples of ten, between which there are four primes, is 10 and 20 . Are there further examples?
3. If n^{2} is a multiple of 3 , must n be a multiple of 3 ?
4. Write down the negations of the following assertions (where $m, n, a, b \in \mathbb{N}$):
(i) if Coke is not worse than Pepsi then Corbyn can be King
(ii) $\forall m \exists n \forall a \forall b(n \geq m) \wedge[(a=1) \vee(b=1) \vee(a b \neq n)]$

Is (ii) true?
5. The sum of some (not necessarily distinct) natural numbers is 100 . How large can their product be?
6. Do there exist 100 consecutive natural numbers none of which is prime?
7. In the sequence $41,43,47,53,61, \ldots$, each difference is two more than the previous one. Are all the numbers in the sequence prime?
8. Find the highest common factor of 12345 and 54321 . Find $u, v \in \mathbb{Z}$ with $76 u+45 v=1$. Does $3381 x+2646 y=21$ have an integer solution?
9. Find the convergents to the fraction $\frac{57}{44}$. Then prove that if x and y are integers such that $57 x+44 y=1$, then $x=17-44 k$ and $y=57 k-22$ for some $k \in \mathbb{Z}$.
10. Let $a, b, c, d \in \mathbb{N}$. Must the numbers $(a, b)(c, d)$ and $(a c, b d)$ be equal? If not, must one be a factor of the other? If $(a, b)=(a, c)=1$, must we have $(a, b c)=1$?
11. Show that, for any $a, b \in \mathbb{N}$, the number $\ell=a b /(a, b)$ is an integer (called the least common multiple of a and b). Show also that ℓ is divisible by both a and b, and that if $n \in \mathbb{N}$ is divisible by both a and b then $\ell \mid n$.
[Give two proofs, one based on uniqueness of prime factorization, the other Bezout-like.]
12. The repeat of a natural number is obtained by writing it twice in a row (for example, the repeat of 356 is 356356). Is there a number whose repeat is a perfect square?
13. Show that the exponent of the prime p in the prime factorisation of n ! is $\sum_{i \geq 1}\left\lfloor n / p^{i}\right\rfloor$, where $\lfloor x\rfloor$ denotes the integer part of x. Prove that this equals $\left(n-S_{n}\right) /(p-1)$, where S_{n} is the sum of the digits in the base p representation of n. Hence show that $10^{249} \mid 1000$!.
14. Let $a<b$ be distinct natural numbers. Prove that every block of b consecutive natural numbers contains two distinct numbers whose product is divisible by $a b$. Suppose now $a<b<c$. Must every block of c consecutive numbers contain three distinct numbers whose product is divisible by $a b c$?

