Numbers and Sets (2014–15)

Example Sheet 3 of 4

- 1. Show that a number is divisible by 9 if, and only if, the sum of its digits is divisible by 9.
- 2. The Fibonacci numbers $F_0, F_1, F_2...$ are defined by $F_0 = 0, F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 2$. Is F_{2010} even or odd? Is it a multiple of 3? Show (by induction on k or otherwise) that $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$ for $k \ge 1$. Deduce that $(F_m, F_n) = (F_{m-n}, F_n)$, and thence that $(F_m, F_n) = F_{(m,n)}$.
- **3.** Let p be prime. Prove that if 0 < k < p then $\binom{p}{k} \equiv 0 \pmod{p}$. If you do this by using a formula for $\binom{p}{k}$ then argue correctly. Can you give a proof directly from the definition?
- 4. Solve these congruences:-

(i) $77x \equiv 11 \pmod{40}$, (ii) $12y \equiv 30 \pmod{54}$, (iii) $z \equiv 13 \pmod{21}$ and $3z \equiv 2 \pmod{17}$ simultaneously.

- •
- 5. Do there exist 100 consecutive natural numbers, each of which has a proper square factor?
- 6. Show that the exponent of the prime p in the prime factorisation of n! is $\sum_{i\geq 1} \lfloor n/p^i \rfloor$, where $\lfloor x \rfloor$ denotes the integer part of x. Prove that this equals $(n-S_n)/(p-1)$, where S_n is the sum of the digits in the base p representation of n. Evaluate 1000! (mod 10²⁴⁹).
- 7. Without using a calculator, evaluate $20!21^{20} \pmod{23}$ and $17^{10000} \pmod{30}$.
- 8. By considering the *n* fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$, or otherwise, prove that $n = \sum_{d|n} \varphi(d)$.
- 9. An RSA encryption scheme (n, e) has modulus n = 187 and encoding exponent e = 7. Find a suitable decoding exponent d. Check your answer by encoding the number 35 and then decoding the result. (*Remember, no calculators!*)
- 10. Let p be a prime of the form 3k + 2. Show that if $x^3 \equiv 1 \pmod{p}$ then $x \equiv 1 \pmod{p}$. Deduce that every number is a cube (mod p): i.e., $y^3 \equiv a \pmod{p}$ is soluble for all $a \in \mathbb{Z}$. Is the same ever true if p is of the form 3k + 1?
- 11. Using the least upper bound axiom, prove that there is a real number x satisfying $x^3 = 2$.
- 12. Prove that $\sqrt{2} + \sqrt{3}$ is irrational and algebraic. Do the same for $2^{1/3} + 2^{2/3}$.
- **13.** Suppose that $x \in \mathbb{R}$ and $x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_0 = 0$, where $a_{n-1}, \ldots, a_0 \in \mathbb{Z}$. Prove that either x is an integer or it is irrational.
- 14. Show that $\sqrt[100]{\sqrt{3}+\sqrt{2}} + \sqrt[100]{\sqrt{3}-\sqrt{2}}$ is irrational.
- **15.** Show that $a^4 + b^7 = 11^{11}$ has no solution with $a, b \in \mathbb{Z}$.