1. Prove carefully, using the least upper bound axiom, that there is a real number x satisfying $x^{3}=2$. Prove also that such an x must be irrational.
2. Prove that $\sqrt{2}+\sqrt{3}$ is irrational and algebraic.
3. Suppose that the real number x is a root of a monic integer polynomial, ie. we have $x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}=0$, for some integers a_{n-1}, \ldots, a_{0}. Prove that x is either integer or irrational.
4. Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be sequences of reals. Show that if $x_{n} \rightarrow 0$ and $x_{n} \rightarrow 0$ then $x_{n} y_{n} \rightarrow 0$. By considering $x_{n}-c$ and $y_{n}-d$, prove carefully that if $x_{n} \rightarrow c$ and $y_{n} \rightarrow d$ then $x_{n} y_{n} \rightarrow c d$. Why would translating the intuitive idea of late x_{n} are close to c and late y_{n} are close to d so late $x_{n} y_{n}$ are close to $c d^{\prime}$ into a proof be more troublesome than the corresponding result from lectures about $x_{n}+y_{n}$?
5. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of reals. Show that if $\left(x_{n}\right)_{n=1}^{\infty}$ is convergent then we must have $x_{n}-x_{n-1} \rightarrow 0$. If $x_{n}-x_{n-1} \rightarrow 0$, must $\left(x_{n}\right)_{n=1}^{\infty}$ be convergent?
6. Which of the following sequences $\left(x_{n}\right)_{n=1}^{\infty}$ converge?
(i) $x_{n}=\frac{3 n}{n+3}$,
(ii) $x_{n}=\frac{n^{100}}{2^{n}}$,
(iii) $x_{n}=\sqrt{n+1}-\sqrt{n}$,
(iv) $x_{n}=(n!)^{1 / n}$.
7. Which of the following series converge?
(i) $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$,
(ii) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$,
(iii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+n}}$.
8. Define a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ by setting $x_{1}=1$ and $x_{n+1}=\frac{x_{n}}{1+\sqrt{x_{n}}}$ for all $n \geq 1$. Show that $\left(x_{n}\right)_{n=1}^{\infty}$ converges, and determine its limit.
9. A real number $x=0 \cdot x_{1} x_{2} x_{3} \ldots$ is called repetitive if its decimal expansion contains arbitrarily long blocks that are the same, ie. if for every k there exist distinct m and n such that $x_{m}=x_{n}, x_{m+1}=x_{n+1}, \ldots, x_{m+k}=x_{n+k}$. Prove that the square of a repetitive number is repetitive.
10. Show that if $\sum_{n=1}^{\infty} x_{n}$ is a convergent series of reals, with all x_{n} positive, then $\sum_{n=1}^{\infty} x_{n}^{2}$ is also convergent. What happens if we do not insist that the x_{n} are positive?
11. If $\sum_{n=1}^{\infty} x_{n}$ is a convergent series of reals, must $\sum_{n=1}^{\infty} x_{n}^{3}$ be convergent?
12. Show that $\sqrt[100]{\sqrt{3}+\sqrt{2}}+\sqrt[100]{\sqrt{3}-\sqrt{2}}$ is irrational.
13. If $\sum_{n=1}^{\infty} x_{n}$ is a convergent series of reals, must $\sum_{n=1}^{\infty} \frac{x_{n}}{n}$ be convergent?
${ }^{+}$14. Let x_{1}, x_{2}, \ldots be reals such that $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent. Show that if for every positive integer k we have $\sum_{n=1}^{\infty} x_{k n}=0$ then $x_{n}=0$ for all n. What happens if we drop the restriction that $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent?
