1. Show that a number is divisible by 9 if, and only if, the sum of its digits is divisible by 9 .
2. The Fibonacci numbers $F_{0}, F_{1}, F_{2} \ldots$ are defined by $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+$ F_{n-2} for all $n \geq 2$. Is F_{2010} even or odd? Is it a multiple of 3 ?
Show (by induction on k or otherwise) that $F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n}$ for $k \geq 1$. Deduce that $\left(F_{m}, F_{n}\right)=\left(F_{m-n}, F_{n}\right)$, and thence that $\left(F_{m}, F_{n}\right)=F_{(m, n)}$.
3. Let p be prime. Prove that if $0<k<p$ then $\binom{p}{k} \equiv 0(\bmod p)$. If you do this by using a formula for $\binom{p}{k}$ then argue correctly. Can you give a proof directly from the definition?
4. Solve these congruences:-
(i) $77 x \equiv 11 \quad(\bmod 40)$,
(ii) $12 y \equiv 30 \quad(\bmod 54)$,
(iii) $z \equiv 13 \quad(\bmod 21) \quad$ and $\quad 3 z \equiv 2 \quad(\bmod 17)$.
5. Do there exist 100 consecutive natural numbers, each of which has a proper square factor?
6. Show that the exponent of the prime p in the prime factorisation of n ! is $\sum_{i \geq 1}\left\lfloor n / p^{i}\right\rfloor$, where $\lfloor x\rfloor$ denotes the integer part of x. Prove that this equals $\left(n-S_{n}\right) /(p-1)$, where S_{n} is the sum of the digits in the base p representation of n. Evaluate $1000!\left(\bmod 10^{249}\right)$.
7. Without using a calculator, evaluate $20!21^{20}(\bmod 23)$ and $17^{10000}(\bmod 30)$.
8. By considering the n fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$, or otherwise, prove that $n=\sum_{d \mid n} \varphi(d)$.
9. An RSA encryption scheme (n, e) has modulus $n=187$ and encoding exponent $e=7$. Find a suitable decoding exponent d. Check your answer by encoding the number 35 and then decoding the result.
10. Let p be a prime of the form $3 k+2$. Show that if $x^{3} \equiv 1(\bmod p)$ then $x \equiv 1(\bmod p)$. Deduce that every number is a cube $(\bmod p)$: i.e., $y^{3} \equiv a(\bmod p)$ is soluble for all $a \in \mathbb{Z}$. Is the same true if p is of the form $3 k+1$?
11. Using the least upper bound axiom, prove that there is a real number x satisfying $x^{3}=2$.
12. Prove that $\sqrt{2}+\sqrt{3}$ is irrational and algebraic. Do the same for $2^{1 / 3}+2^{2 / 3}$.
13. Suppose that $x \in \mathbb{R}$ and $x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}=0$, where $a_{n-1}, \ldots, a_{0} \in$ \mathbb{Z}. Prove that either x is an integer or it is irrational.
14. Show that $\sqrt[100]{\sqrt{3}+\sqrt{2}}+\sqrt[100]{\sqrt{3}-\sqrt{2}}$ is irrational.
15. Show that $a^{4}+b^{7}=11^{11}$ has no solution with $a, b \in \mathbb{Z}$.
