1. For which $n \in \mathbb{N}$, if any, are three numbers of the form $n, n+2, n+4$ all prime?
2. Between 0 and 10 there are four primes. The same is true between 10 and 20. Are there two other consecutive multiples of ten between which there are four primes?
3. If n^{2} is a multiple of 3 , must n be a multiple of 3 ?
4. Write down the negations of the following assertions (where $m, n, a, b \in \mathbb{N}$):
(i) if Coke is not worse than Pepsi then Osborne hasn't a clue what he's about.
(ii) $\forall m \exists n \forall a \forall b(n \geq m) \wedge[(a=1) \vee(b=1) \vee(a b \neq n)]$,
5. The sum of some (not necessarily distinct) natural numbers is 100 . How large can their product be?
6. Prove that $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
7. The symmetric difference $A \triangle B$ of two sets A and B is the set of elements that belong to exactly one of A and B. Express this in terms of \cup, \cap and \backslash. Prove that \triangle is associative.
8. Let $A_{1}, A_{2}, A_{3}, \ldots$ be sets such that $A_{1} \cap A_{2} \cap \ldots \cap A_{n} \neq \emptyset$ holds for all n. Must it be that $\bigcap_{n=1}^{\infty} A_{n} \neq \emptyset$?
9. Prove that $f \circ g$ is injective if f and g are injective. Does $f \circ g$ injective imply f injective? Does it imply g injective? What if we replace 'injective' by 'surjective' passim?
10. Let $A=\{1,2,3\}$ and $B=\{1,2,3,4,5\}$? How many functions $A \rightarrow B$ are there? How many are injections? Count the number of surjections $B \rightarrow A$.
11. Let $f: X \rightarrow Y$ and let $C, D \subset Y$. Prove that $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$. Let $A, B \subset X$. Must it be true that $f(A \cap B)=f(A) \cap f(B)$?
12. Define a relation R on \mathbb{N} by setting $a R b$ if $a \mid b$ or $b \mid a$. Is R an equivalence relation?
13. The relation S contains the relation R if $a S b$ whenever $a R b$. Let R be the relation on \mathbb{Z} ' $a R b$ if $b=a+3$ '. How many equivalence relations on \mathbb{Z} contain R ?
14. Find a bijection $f: \mathbb{Q} \rightarrow \mathbb{Q} \backslash\{0\}$. Can f be strictly increasing (that is, $f(x)<f(y)$ whenever $x<y$)?
