Numbers and Sets (2009–10)

Example Sheet 4 of 4

- 1. Define a sequence $(x_n)_{n=1}^{\infty}$ by setting $x_1=1$ and $x_{n+1}=\frac{x_n}{1+\sqrt{x_n}}$ for all $n\geq 1$. Show that $(x_n)_{n=1}^{\infty}$ converges, and determine its limit.
- **2.** Let $(a_n)_{n=1}^{\infty}$ be a sequence of reals. Show that if $(a_n)_{n=1}^{\infty}$ is convergent then we must have $a_n a_{n-1} \to 0$. If $a_n a_{n-1} \to 0$, must $(a_n)_{n=1}^{\infty}$ be convergent?
- **3.** Let $[a_n, b_n]$, $n = 1, 2, \ldots$, be closed intervals with $[a_n, b_n] \cap [a_m, b_m] \neq \emptyset$ for all n, m. Prove that $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$.
- **4.** Which of the following sequences $(x_n)_{n=1}^{\infty}$ converge?

$$x_n = \frac{3n}{n+3}$$
 $x_n = \frac{n^{100}}{2^n}$ $x_n = \sqrt{n+1} - \sqrt{n}$ $x_n = (n!)^{1/n}$

5. Which of the following series converge?

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2} \qquad \sum_{n=1}^{\infty} \frac{n!}{n^n} \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+n}}$$

- **6.** Let $a_n \in \mathbb{R}$ and let $b_n = \frac{1}{n} \sum_{i=1}^n a_i$. Show that, if $a_n \to a$ as $n \to \infty$, then $b_n \to a$ also.
- 7. The series $\sum_{n=1}^{\infty} x_n$ converges. Must $\sum_{n=1}^{\infty} x_n/n$ also converge?
- 8. A real number $r=0\cdot d_1d_2d_3\ldots$ is called *repetitive* if its decimal expansion contains arbitrarily long blocks that are the same; that is, for every k there exist distinct m and n such that $d_m=d_n,\ d_{m+1}=d_{n+1},\ \ldots,\ d_{m+k}=d_{n+k}$. Prove that the square of a repetitive number is repetitive.
- **9.** Show that any collection of pairwise disjoint discs in the plane is countable. What happens if we replace 'discs' by 'circles'?
- 10. Show that the collection of all finite subsets of \mathbb{N} is countable. What goes wrong if we try to use the diagonal argument to show that it is uncountable?
- **11.** A function $f: \mathbb{N} \to \mathbb{N}$ is *increasing* if $f(n+1) \geq f(n)$ for all n and *decreasing* if $f(n+1) \leq f(n)$ for all n. Is the set of increasing functions countable or uncountable? What about the set of decreasing functions?
- 12. Find an injection $\mathbb{R}^2 \to \mathbb{R}$. Is there an injection from the set of all real sequences to \mathbb{R} ?
- **13.** Is there an uncountable family $S \subset \mathcal{P}\mathbb{N}$ such that $A \cap B$ is finite for all distinct $A, B \in S$?
- **14.** For each $x \in \mathbb{R}$ we are given an interval $I_x = [x \delta_x, x + \delta_x]$ with $\delta_x \ge 0$. Moreover, for each $x, y \in \mathbb{R}$ with $y \in I_x$, we have $\delta_y < \delta_x$. Show that $\delta_x = 0$ for uncountably many x.