Numbers and Sets (2009-10)

Example Sheet 1 of 4

1. Write down the negations of the following assertions (where $m, n, a, b \in \mathbb{N}$):
(i) if Coke is not worse than Pepsi then nothing Mandelson says can be trusted.
(ii) $\forall m \exists n \forall a \forall b(n \geq m) \wedge[(a=1) \vee(b=1) \vee(a b \neq n)]$,
2. For which $n \in \mathbb{N}$, if any, are three numbers of the form $n, n+2, n+4$ all prime?
3. Between 0 and 10 there are four primes. The same is true between 10 and 20 . Does it ever happen again between two consecutive multiples of ten?
4. If n^{2} is a multiple of 3 , must n be a multiple of 3 ?
5. The sum of some (not necessarily distinct) natural numbers is 100 . How large can their product be?
6. Find the highest common factor of 12345 and 54321 .
7. Find integers u and v with $76 u+45 v=1$. Does $3528 x+966 y=24$ have an integer solution?
8. Find the convergents to the fraction $\frac{57}{44}$. Prove that if x and y are integers such that $57 x+$ $44 y=1$, then $x=17-44 k$ and $y=57 k-22$ for some $k \in \mathbb{Z}$.
9. Which of these are true for all natural numbers a, b and c ?
(i) $(a, b)(a, c)=\left(a^{2}, b c\right)$.
(ii) If $(a, b)=(a, c)=1$ then $(a, b c)=1$.
10. Show that, for any $a, b \in \mathbb{N}$, the number $\ell=a b /(a, b)$ is an integer (called the least common multiple of a and b). Show also that ℓ is divisible by both a and b, and that if $n \in \mathbb{N}$ is divisible by both a and b then $\ell \mid n$.
11. Do there exist 100 consecutive natural numbers none of which is prime?
12. In the sequence $41,43,47,53,61, \ldots$, each difference is two more than the previous one. Are all the numbers in the sequence prime?
13. The repeat of a natural number is obtained by writing it twice in a row (for example, the repeat of 356 is 356356). Is there a number whose repeat is a perfect square?
14. Define $\mu: \mathbb{N} \rightarrow \mathbb{Z}$ by $\mu(n)=(-1)^{k}$ if n is a product of k distinct primes (including the case $k=0$) and $\mu(n)=0$ otherwise. Prove that $\sum_{d \mid n} \mu(d)=0$ unless $n=1$.
