Numbers and Sets (2009–10)

Example Sheet 1 of 4

- **1.** Write down the negations of the following assertions (where $m, n, a, b \in \mathbb{N}$):
 - (i) if Coke is not worse than Pepsi then nothing Mandelson says can be trusted.
 - (ii) $\forall m \exists n \forall a \forall b \ (n \ge m) \land [(a = 1) \lor (b = 1) \lor (ab \ne n)],$
- **2.** For which $n \in \mathbb{N}$, if any, are three numbers of the form n, n+2, n+4 all prime?
- **3.** Between 0 and 10 there are four primes. The same is true between 10 and 20. Does it ever happen again between two consecutive multiples of ten?
- 4. If n^2 is a multiple of 3, must n be a multiple of 3?
- 5. The sum of some (not necessarily distinct) natural numbers is 100. How large can their product be?
- 6. Find the highest common factor of 12345 and 54321.
- 7. Find integers u and v with 76u + 45v = 1. Does 3528x + 966y = 24 have an integer solution?
- 8. Find the convergents to the fraction $\frac{57}{44}$. Prove that if x and y are integers such that 57x + 44y = 1, then x = 17 44k and y = 57k 22 for some $k \in \mathbb{Z}$.
- 9. Which of these are true for all natural numbers a, b and c?
 - (i) $(a,b)(a,c) = (a^2,bc)$.
 - (ii) If (a, b) = (a, c) = 1 then (a, bc) = 1.
- 10. Show that, for any $a, b \in \mathbb{N}$, the number $\ell = ab/(a, b)$ is an integer (called the *least* common multiple of a and b). Show also that ℓ is divisible by both a and b, and that if $n \in \mathbb{N}$ is divisible by both a and b then $\ell \mid n$.
- 11. Do there exist 100 consecutive natural numbers none of which is prime?
- **12.** In the sequence 41, 43, 47, 53, 61, ..., each difference is two more than the previous one. Are all the numbers in the sequence prime?
- **13.** The *repeat* of a natural number is obtained by writing it twice in a row (for example, the repeat of 356 is 356356). Is there a number whose repeat is a perfect square?
- 14. Define $\mu : \mathbb{N} \to \mathbb{Z}$ by $\mu(n) = (-1)^k$ if n is a product of k distinct primes (including the case k = 0) and $\mu(n) = 0$ otherwise. Prove that $\sum_{d|n} \mu(d) = 0$ unless n = 1.