
Mich. 2008 NUMBERS AND SETS — EXAMPLES 4 PTJ

Important Note These questions are (deliberately) not all equally difficult or equally
long. In general, the first ten questions on each sheet are intended to be ones which can
be tackled (perhaps with a hint or two from a supervisor) by anyone who has understood
the relevant material in the lectures; questions from 11 onwards may be more challenging,
and are intended for those who find the standard material easy.

1. Let A1, A2, A3, . . . be a sequence of subsets of R such that A1 ∩ A2 ∩ · · · ∩ An 6= ∅
for each n ≥ 1. Does it follow that ⋂∞

n=1
An (that is, the intersection of all the An’s) is

nonempty? Does the answer change if you are given the extra information that each An is
a closed interval, that is a set of the form [an, bn] = {x ∈ R | an ≤ x ≤ bn} for some pair
(an, bn) of real numbers with an < bn?

2. The Cantor set C is defined to be
⋂∞

n=1
An, where A1 is the closed interval [0, 1] and,

for each n > 1, An is obtained from An−1 by deleting the middle third of each interval in
An−1 — thus A2 = [0,

1

3
]∪ [ 2

3
, 1], A3 = [0,

1

9
]∪ [ 2

9
, 1

3
]∪ [ 2

3
, 7

9
]∪ [ 8

9
, 1], and so on. Show that

a real number x belongs to C if and only if it has an expansion
∑∞

n=1
an/3

n in base 3,
where each an is either 0 or 2. Deduce that C is uncountable.

3. A set A is said to be Dedekind-infinite if there exists an injective function f : A → A
which is not surjective. Show that A is Dedekind-infinite if and only if there is an injective
function N → A. [Hint: given f as in the definition, choose a0 ∈ A which is not in its
image and consider the mapping n 7→ fn(a0).]

4. Construct an injection from R×R to R.

5. Construct a bijection from Q to Q \ {0}. Does there exist such a bijection f which is
order-preserving (that is, satisfies f(x) < f(y) whenever x < y)?

6. Show that the set of all finite subsets of N is countable. What goes wrong if we try to
use a diagonal argument to show that it is uncountable?

7. Show that there does not exist an uncountable family of pairwise disjoint discs in the
plane. What happens if we replace ‘discs’ by ‘circles’?

8. A function f : N → N is increasing if f(n + 1) ≥ f(n) for all n, and decreasing if
f(n + 1) ≤ f(n) for all n. Is the set of increasing functions countable or uncountable?
What about the set of decreasing functions?

9. Let f : R → R be a function such that f(x) ≥ 0 for all x, and such that, whenever
y 6= x and x−f(x) ≤ y ≤ x+f(x), we have f(y) < f(x). Show that there are uncountably
many x such that f(x) = 0.

10. Using the Cantor–Bernstein theorem, show that there is a bijection between the set
of all subsets of R and the set of all functions R → R. [Hint: recall that a function
f : R→ R may be represented by the set of ordered pairs {(x, f(x)) | x ∈ R}.]
11. Let S be a collection of subsets of N such that for every A,B ∈ S we have either
A ⊆ B or B ⊆ A. Can S be uncountable?



12. (a) By a finite continued fraction we mean an expression of the form [a0, a1, a2, . . . , an]
where n ≥ 0 and the ai are integers, all except possibly a0 being strictly positive. We assign
a real value to each such expression by induction on n, as follows:
if n = 0, [a0] = a0;
if n > 0, [a0, a1, . . . , an] = a0 + 1/[a1, . . . , an].
Show that the value of any finite continued fraction is rational. Show also that any rational
number can be represented in exactly two ways by a finite continued fraction. [Hint: given
x ∈ Q \ Z, set a0 = bxc and observe that 1/(x− a0) has smaller denominator than x.]

(b) An infinite continued fraction is an expression [a0, a1, a2, . . .] where the ai satisfy the
same conditions as before (but there are infinitely many of them). Show that, for any such
expression, the values of the finite continued fractions [a0, a1, . . . , an] converge to a limit
as n→∞; we define this limit to be the value of the infinite continued fraction. Show also
that any irrational number can be represented by a unique infinite continued fraction.

(c) A real number x is called a quadratic irrational if it is not rational, but it is a root
of a quadratic polynomial with rational coefficients; that is, ax2 + bx + c = 0 for some
a, b, c ∈ Q, not all zero. Show that if x is a quadratic irrational then so are 1/x and a0+x
for any a0 ∈ Z. Deduce that if the continued fraction representation of x is eventually
periodic (i.e., there exist positive integers k and n0 such that an+k = an whenever n ≥ n0)
then x is a quadratic irrational.

(d) Find the continued fraction representations of
√
2,
√
3 and the golden ratio τ (cf.

question 11 on sheet 3).

(e) Assuming the result that Pell’s equation x2− dy2 = 1 always has a solution in integers
x, y when d is an integer but not a perfect square, show that for any such d the continued
fraction representation of

√
d is eventually periodic. Deduce that the continued fraction

representation of every quadratic irrational is eventually periodic.

13. Consider the function f : R→ R defined as follows. We set f(n) = n for each integer
n. We then define f on the rationals by the following recursion: assume f(x) has been
defined for all rationals with denominators less than q; then if x = p/q is a rational with
denominator q (in lowest terms), we set f(x) = 1

2
(f(x−) + f(x+)), where x− and x+ are

the rationals closest to x on either side with denominators less than q. [Thus f( 1

2
) = 1

2
,

f( 1
3
) = 1

4
, f( 1

4
) = 1

8
, f( 2

5
) = 3

8
, and so on.] Finally, for any irrational x, we define

f(x) = sup {f(y) | y ∈ Q, y < x}.
(a) Show that f maps Q bijectively to the set D of dyadic rationals, i.e. rationals whose
denominators are powers of 2.

(b) Show that f coincides with the function defined as follows: suppose x has continued
fraction representation [a0, a1, a2, a3, . . .]; then f(x) has integer part a0, and the expansion
of its fractional part in base 2 consists of a block of (a1 − 1) 0’s, followed by a block of a2

1’s, followed by a3 0’s, and so on (ending with an infinite string of 0’s or 1’s, as appropriate,
if the continued fraction is finite).

(c) Deduce that f maps the set of quadratic irrationals bijectively to Q \ D. Show in
particular that f(τ) = 5

3
.


