Important Note These questions are (deliberately) not all equally difficult or equally long. In general, the first ten questions on each sheet are intended to be ones which can be tackled (perhaps with a hint or two from a supervisor) by anyone who has understood the relevant material in the lectures; questions from 11 onwards may be more challenging, and are intended for those who find the standard material easy.

1. Let $A_{1}, A_{2}, A_{3}, \ldots$ be a sequence of subsets of \mathbf{R} such that $A_{1} \cap A_{2} \cap \cdots \cap A_{n} \neq \emptyset$ for each $n \geq 1$. Does it follow that $\bigcap_{n=1}^{\infty} A_{n}$ (that is, the intersection of all the A_{n} 's) is nonempty? Does the answer change if you are given the extra information that each A_{n} is a closed interval, that is a set of the form $\left[a_{n}, b_{n}\right]=\left\{x \in \mathbf{R} \mid a_{n} \leq x \leq b_{n}\right\}$ for some pair $\left(a_{n}, b_{n}\right)$ of real numbers with $a_{n}<b_{n}$?
2. The Cantor set C is defined to be $\bigcap_{n=1}^{\infty} A_{n}$, where A_{1} is the closed interval $[0,1]$ and, for each $n>1, A_{n}$ is obtained from A_{n-1} by deleting the middle third of each interval in A_{n-1} - thus $A_{2}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right], A_{3}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]$, and so on. Show that a real number x belongs to C if and only if it has an expansion $\sum_{n=1}^{\infty} a_{n} / 3^{n}$ in base 3 , where each a_{n} is either 0 or 2 . Deduce that C is uncountable.
3. A set A is said to be Dedekind-infinite if there exists an injective function $f: A \rightarrow A$ which is not surjective. Show that A is Dedekind-infinite if and only if there is an injective function $\mathbf{N} \rightarrow A$. [Hint: given f as in the definition, choose $a_{0} \in A$ which is not in its image and consider the mapping $n \mapsto f^{n}\left(a_{0}\right)$.]
4. Construct an injection from $\mathbf{R} \times \mathbf{R}$ to \mathbf{R}.
5. Construct a bijection from \mathbf{Q} to $\mathbf{Q} \backslash\{0\}$. Can we find such a bijection f which is order-preserving (that is, satisfies $f(x)<f(y)$ whenever $x<y)$?
6. Show that the set of all finite subsets of \mathbf{N} is countable. What goes wrong if we try to use a diagonal argument to show that it is uncountable?
7. Show that there does not exist an uncountable family of pairwise disjoint discs in the plane. What happens if we replace 'discs' by 'circles'?
8. A function $f: \mathbf{N} \rightarrow \mathbf{N}$ is increasing if $f(n+1) \geq f(n)$ for all n, and decreasing if $f(n+1) \leq f(n)$ for all n. Is the set of increasing functions countable or uncountable? What about the set of decreasing functions?
9. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function such that $f(x) \geq 0$ for all x, and such that, whenever $y \neq x$ and $x-f(x) \leq y \leq x+f(x)$, we have $f(y)<f(x)$. Show that there are uncountably many x such that $f(x)=0$.
10. Using the Cantor-Bernstein theorem, show that there is a bijection between the set of all subsets of \mathbf{R} and the set of all functions $\mathbf{R} \rightarrow \mathbf{R}$. [Hint: recall that a function $f: \mathbf{R} \rightarrow \mathbf{R}$ may be represented by the set of ordered pairs $\{(x, f(x)) \mid x \in \mathbf{R}\}$.]
11. Let S be a collection of subsets of \mathbf{N} such that for every $A, B \in S$ we have either $A \subseteq B$ or $B \subseteq A$. Can S be uncountable?
12. (a) By a finite continued fraction we mean an expression of the form $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]$ where $n \geq 0$ and the a_{i} are integers, all except possibly a_{0} being strictly positive. We assign a real value to each such expression by induction on n, as follows:
if $n=0,\left[a_{0}\right]=a_{0}$;
if $n>0,\left[a_{0}, a_{1}, \ldots, a_{n}\right]=a_{0}+1 /\left[a_{1}, \ldots, a_{n}\right]$.
Show that the value of any finite continued fraction is rational. Show also that any rational number can be represented in exactly two ways by a finite continued fraction. [Hint: given $x \in \mathbf{Q} \backslash \mathbf{Z}$, set $a_{0}=\lfloor x\rfloor$ and observe that $1 /\left(x-a_{0}\right)$ has smaller denominator than x.
(b) An infinite continued fraction is an expression $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ where the a_{i} satisfy the same conditions as before (but there are infinitely many of them). Show that, for any such expression, the values of the finite continued fractions $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ converge to a limit as $n \rightarrow \infty$; we define this limit to be the value of the infinite continued fraction. Show also that any irrational number can be represented by a unique infinite continued fraction.
(c) A real number x is called a quadratic irrational if it is not rational, but it is a root of a quadratic polynomial with rational coefficients; that is, $a x^{2}+b x+c=0$ for some $a, b, c \in \mathbf{Q}$, not all zero. Show that if x is a quadratic irrational then so are $1 / x$ and $a_{0}+x$ for any $a_{0} \in \mathbf{Z}$. Deduce that if the continued fraction representation of x is eventually periodic (i.e., there exist positive integers k and n_{0} such that $a_{n+k}=a_{n}$ whenever $n \geq n_{0}$) then x is a quadratic irrational.
(d) Find the continued fraction representations of $\sqrt{2}, \sqrt{3}$ and the golden ratio τ (cf. question 11 on sheet 3).
(e) Assuming the result that Pell's equation $x^{2}-d y^{2}=1$ always has a solution in integers x, y when d is an integer but not a perfect square, show that for any such d the continued fraction representation of \sqrt{d} is eventually periodic. Deduce that the continued fraction representation of every quadratic irrational is eventually periodic.
13. Consider the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined as follows. We set $f(n)=n$ for each integer n. We then define f on the rationals by the following recursion: assume $f(x)$ has been defined for all rationals with denominators less than q; then if $x=p / q$ is a rational with denominator q (in lowest terms), we set $f(x)=\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right.$), where x^{-}and x^{+}are the rationals closest to x on either side with denominators less than q. [Thus $f\left(\frac{1}{2}\right)=\frac{1}{2}$, $f\left(\frac{1}{3}\right)=\frac{1}{4}, f\left(\frac{1}{4}\right)=\frac{1}{8}, f\left(\frac{2}{5}\right)=\frac{3}{8}$, and so on.] Finally, for any irrational x, we define $f(x)=\sup \{f(y) \mid y \in \mathbf{Q}, y<x\}$.
(a) Show that f maps \mathbf{Q} bijectively to the set \mathbf{D} of dyadic rationals, i.e. rationals whose denominators are powers of 2 .
(b) Show that f coincides with the function defined as follows: suppose x has continued fraction representation $\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]$; then $f(x)$ has integer part a_{0}, and the expansion of its fractional part in base 2 consists of a block of $\left(a_{1}-1\right) 0$'s, followed by a block of a_{2} 1 's, followed by $a_{3} 0$'s, and so on (ending with an infinite string of 0 's or 1 's, as appropriate, if the continued fraction is finite).
(c) Deduce that f maps the set of quadratic irrationals bijectively to $\mathbf{Q} \backslash \mathbf{D}$. Show in particular that $f(\tau)=\frac{5}{3}$.
