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Important Note These questions are (deliberately) not all equally difficult or equally
long. In general, the first ten questions on each sheet are intended to be ones which can
be tackled (perhaps with a hint or two from a supervisor) by anyone who has understood
the relevant material in the lectures; questions from 11 onwards may be more challenging,
and are intended for those who find the standard material easy.

1. Prove carefully, using the least upper bound axiom, that there is a real number x
satisfying x3 = 2. Prove also that such an x must be irrational.

2. Suppose that a real number x is a root of a monic integer polynomial; that is, we have
an equation of the form xn+a1x

n−1+ · · ·+an−1x+an = 0 with a1, a2, . . . , an ∈ Z. Prove
that if x is not an integer then it must be irrational.

3. Show that
√
2 +

√
3 is algebraic. Is it rational?

4. Prove that the usual order-relation < is the only binary relation on Q which satisfies
the axioms for an ordered field.

5. Let Q(
√
2) denote the set of all real numbers of the form a + b

√
2, where a and b are

rational. Show that Q(
√
2) is a subfield of R (that is, it is closed under the operations

of addition and multiplication, and of taking additive and multiplicative inverses). Show
also that there are two different binary relations on Q(

√
2) which make it into an ordered

field.

6. Let (xn) and (yn) be sequences of real numbers. Prove that if xn → 0 and yn → 0 as
n → ∞, then xnyn → 0. By considering xn − c and yn − d, deduce that if xn → c and
yn → d as n→∞, then xnyn → cd.

7. Which of the following sequences (xn) converge?

(a) xn =
3n

n+ 3
; (b) xn = n100/2n ; (c) xn =

√
n+ 1−

√
n ; (d) xn = (n!)

1/n .

8. Define a sequence (xn) by setting x1 = 1 and xn+1 = xn/(1+
√
xn) for all n ≥ 1. Show

that (xn) converges, and find its limit.

9. Which of the following series converge?

(a)
∞∑

n=1

1

1 + n2
; (b)

∞∑

n=1

n!

nn
; (c)

∞∑

n=1

1√
n2 + n

.

10. A real number x = n · a1a2a3 · · · is called repetitive if its decimal expansion contains
pairs of arbitrarily long blocks which are the same, i.e. if for every k there exist distinct
m and n such that am = an, am+1 = an+1, . . . , am+k = an+k. Prove that the square of a
repetitive number is repetitive.

11. Let (Fn) denote the sequence of Fibonacci numbers (for the definition, see question
5 on sheet 2), and let xn = Fn+1/Fn. Show that xn − xn+1 = (−1)n/FnFn+1 for all n;
deduce that (xn) converges to a limit τ as n→∞, and that τ is irrational and algebraic.
[τ is traditionally called the golden ratio, even though it’s irrational.] Show also that
Fn = (τ

n − (−τ)−n)/
√
5 for all n.



12. (a) Let pn denote the nth prime number (so p1 = 2, p2 = 3, p3 = 5, . . .), and let
un = (1− 1

pn

)−1. Show that
N∏

n=1

un ≥
pN+1−1∑

k=1

k−1 ,

and deduce that the product on the left tends to infinity as N →∞.
(b) Assuming the result that

∑∞

n=1
xn/n converges to log 1/(1−x) for |x| < 1 (which will

— I hope — be proved in next term’s Analysis course), show that log 1/(1− x) ≤ x+ x2

for 0 ≤ x ≤ 1

2
.

(c) Deduce that
∑∞

n=1
p−1

n diverges. [Thus, in some sense, there are more primes than
perfect squares.]

13. Let (xn) be a sequence of positive real numbers such that
∑∞

n=1
xn is convergent.

Show that there exists a sequence (yn) such that yn/xn → ∞ as n → ∞, but
∑∞

n=1
yn is

still convergent.

14. [An example of a non-archimedean ordered field.] We define a polynomial fraction to
be a formal expression of the form (p(x)/q(x)) where p(x) and q(x) are polynomials with
real coefficients and q(x) is not identically zero; a rational function is an equivalence class
of polynomial fractions under the equivalence relation which identifies (p(x)/q(x)) with
(r(x)/s(x)) if and only if p(x)s(x) = q(x)r(x) for all x.
(a) Verify that the relation just described is indeed an equivalence relation.
(b) Define addition and multiplication of rational functions, and verify that they satisfy
the usual laws of arithmetic, so that the set of all rational functions forms a field F . [This
is just like the construction of Q from Z which we did in lectures; there is no need to write
out all the proofs in detail, as long as you do enough to convince yourself — and your
supervisor — that you could write them out if necessary.]
(c) We define a binary relation < on F by setting (p(x)/q(x)) < (r(x)/s(x)) if and only if
there exists x0 ∈ R such that q(x)r(x)−p(x)s(x) and q(x)s(x) (are nonzero and) have the
same sign for all x > x0. Show that this definition makes F into an ordered field. [Hint:
recall that a polynomial which is not identically zero has only finitely many roots.]
(d) Show that the fractions of the form (a/1), where a is a real number regarded as a
constant polynomial, form a subfield of F isomorphic to R. Show also that this subset has
an upper bound in F .
(e) If you’re feeling really energetic, find all possible binary relations on F which make it
into an ordered field. [Hint: once you know where (x/1) lies in relation to the constant
rational functions, you’ve determined the order completely.]


