IA Groups - Example Sheet 3

1. Throughout this question 'identify' means 'to find a standard group that it is isomorphic to'.
(a) Let $H \leqslant C_{n}$. Identify the quotient C_{n} / H.
(b) Show that $N=\{e,(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of S_{4}. Identify the quotient S_{4} / N.
(c) Show that any subgroup $N \leqslant D_{2 n}$ consisting only of rotations is normal. Identify the quotient $D_{2 n} / N$.
(d) Given a group G, let G^{2} denote the direct product $G \times G$. Consider the subgroup \mathbb{Z}^{2} of the group \mathbb{R}^{2}. Identify the quotient $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
2. Given subgroups H and N of a group G, show that $H N=\{h n: h \in H, n \in N\}$ is a subgroup of G if N is normal in G. If H and N are both finite, prove that $|H N|=\frac{|H| \cdot|N|}{|H \cap N|}$.
3. (a) Let H be a subgroup of a group G. Show that H is normal in G if and only if H is a union of some conjugacy classes of G.
(b) Let N be a normal subgroup of index m in G. Show that $g^{m} \in N$ for any $g \in G$.
4. Let G be a group acting on a set X. If for $x, y \in X$, there is a $g \in G$ such that $g(x)=y$, show that $\operatorname{Stab}(y)=g \operatorname{Stab}(x) g^{-1}$.
5. Let G be a finite abelian group acting faithfully on a finite set X. Show that if the action is transitive, then $|G|=|X|$.
6. Show that $D_{2 n}$ has one conjugacy class of reflections if n is odd, and two conjugacy classes of reflections if n is even.
7. Let G be a finite group. Show that $g(H)=g H g^{-1}$ defines an action of G on the set of subgroups of G. Show that for $H \leqslant G$, the size of the orbit of H under this action is at most $|G: H|$. Deduce that if $H \neq G$, then G is not the union of all conjugates of H.
8. (a) Let G be a finite group and let H be a subgroup of index $k \neq 1$ in G. Suppose that $|G|$ does not divide $k!$. By considering the action of G on the set of left cosets of H in G, show that H contains a non-trivial normal subgroup of G.
(b) Show that if a group G of order 28 has a normal subgroup of order 4, then G is abelian.
9. Let G be a finite group acting on a set X, and let $\operatorname{Fix}(g)=\{x \in X: g(x)=x\}$ be the set of points fixed by g. By counting the set $\{(g, x) \in G \times X: g(x)=x\}$ in two ways, show that the number of orbits of the action is equal to

$$
\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|
$$

Deduce that if G acts transitively and $|X|>1$, then there is some $g \in G$ with no fixed point.
*How many distinct ways are there to colour the faces of a cube with three colours? Here, we consider two colourings to be distinct if one can not be obtained from the other via a rotation.
10. Let p be a prime and let G be a group of order p^{2}. By considering the conjugation action of G on itself, show that G is abelian. Furthermore, show that up to isomorphism there are just two groups of that order for each prime p.
*11. Let G be a (not necessarily finite) group generated by a finite set X. Prove that the number of subgroups of a given index n in G is finite, and give a bound for this number in terms of n and $|X|$.

