Michaelmas 2022

- 1. Write the following permutations as products of disjoint cycles, and compute their order and sign:
 - (a) (123)(1234)(132),
 - (b) (123)(235)(345)(45).
- 2. Show that S_n is generated by each of the following sets of permutations:
 - (a) the set of transpositions $\{(j \ j+1) : 1 \le j < n\},\$
 - (b) the set of transpositions $\{(1 \ k) : 1 < k \le n\}$,
 - (c) the set $\{(12), (123 \cdots n)\}$.
- 3. What is the largest possible order of an element in S_5 ? And in S_9 ? Show that every element in S_{10} of order 14 is odd.
- 4. Let H be a subgroup of S_n . Show that if H contains an odd element, then exactly half of its elements are odd.
- 5. (a) Show that A_4 has no subgroup of order 6.
 - (b) Show that S_4 has a subgroup of order d for each divisor d of $|S_4|$. For which d does S_4 have two non-isomorphic subgroups of order d?
- 6. (a) Let G be a finite group and let K and H be subgroups of G, with $K \leq H$. Show that $|G:K| = |G:H| \cdot |H:K|$.
 - (b) Let G be an infinite group, and let H and K be subgroups of finite index in G (i.e. $|G:K| < \infty$, $|G:H| < \infty$). Show that $H \cap K$ is also of finite index in G.
- 7. (a) Show that if a group G contains an element of order 6, and an element of order 10, then G has order at least 30.
 - (b) Let G be a group of order 85, and let H be a subgroup of G containing at least 18 elements. Determine H.
- 8. Is it true that if K is a normal subgroup of H, and H is a normal subgroup of G, then K is a normal subgroup of G?
- 9. Let H be a subgroup of a group G. Find the largest normal subgroup of G contained in H in terms of H and the elements of G.
- 10. Show that $C_6 \cong C_2 \times C_3$. Explain why $C_{12} \ncong C_6 \times C_2$. Express C_{12} as a direct product $C_n \times C_m$, with n, m > 1. When is $C_{nm} \cong C_n \times C_m$?
- 11. Show that the dihedral group D_{12} is isomorphic to the direct product $D_6 \times C_2$. Is D_{16} isomorphic to $D_8 \times C_2$?
- 12. Show that a group of order 10 is either cyclic or dihedral. Extend your proof to groups of order 2p, with p an odd prime.
- 13. Must a group of order 55 have elements of order 5 and of order 11? Must a group of order 55 be cyclic? (Hint: Consider the functions $f : \mathbb{Z}_{11} \to \mathbb{Z}_{11}$ of the form f(x) = ax + b where $a, b \in \mathbb{Z}_{11}$ and $a \neq 0$.) *Must a group of order 65 have elements of order 5 and of order 13? Must a group of order 65 be cyclic?