IA Groups - Example Sheet 2

1. Write the following permutations as products of disjoint cycles, and compute their order and sign:
(a) $(123)(1234)(132)$,
(b) $(123)(235)(345)(45)$.
2. Show that S_{n} is generated by each of the following sets of permutations:
(a) the set of transpositions $\{(j j+1): 1 \leq j<n\}$,
(b) the set of transpositions $\{(1 k): 1<k \leq n\}$,
(c) the set $\{(12),(123 \cdots n)\}$.
3. What is the largest possible order of an element in S_{5} ? And in S_{9} ? Show that every element in S_{10} of order 14 is odd.
4. Let H be a subgroup of S_{n}. Show that if H contains an odd element, then exactly half of its elements are odd.
5. (a) Show that A_{4} has no subgroup of order 6.
(b) Show that S_{4} has a subgroup of order d for each divisor d of $\left|S_{4}\right|$. For which d does S_{4} have two non-isomorphic subgroups of order d ?
6. (a) Let G be a finite group and let K and H be subgroups of G, with $K \leqslant H$. Show that $|G: K|=|G: H| \cdot|H: K|$.
(b) Let G be an infinite group, and let H and K be subgroups of finite index in G (i.e. $|G: K|<$ $\infty,|G: H|<\infty)$. Show that $H \cap K$ is also of finite index in G.
7. (a) Show that if a group G contains an element of order 6 , and an element of order 10 , then G has order at least 30 .
(b) Let G be a group of order 85 , and let H be a subgroup of G containing at least 18 elements. Determine H.
8. Is it true that if K is a normal subgroup of H, and H is a normal subgroup of G, then K is a normal subgroup of G ?
9. Let H be a subgroup of a group G. Find the largest normal subgroup of G contained in H in terms of H and the elements of G.
10. Show that $C_{6} \cong C_{2} \times C_{3}$. Explain why $C_{12} \nexists C_{6} \times C_{2}$. Express C_{12} as a direct product $C_{n} \times C_{m}$, with $n, m>1$. When is $C_{n m} \cong C_{n} \times C_{m}$?
11. Show that the dihedral group D_{12} is isomorphic to the direct product $D_{6} \times C_{2}$. Is D_{16} isomorphic to $D_{8} \times C_{2}$?
12. Show that a group of order 10 is either cyclic or dihedral. Extend your proof to groups of order $2 p$, with p an odd prime.
13. Must a group of order 55 have elements of order 5 and of order 11? Must a group of order 55 be cyclic? (Hint: Consider the functions $f: \mathbb{Z}_{11} \rightarrow \mathbb{Z}_{11}$ of the form $f(x)=a x+b$ where $a, b \in \mathbb{Z}_{11}$ and $a \neq 0$.) *Must a group of order 65 have elements of order 5 and of order 13 ? Must a group of order 65 be cyclic?
