IA Groups - Example Sheet 1

1. Let G be a group. Show that the identity e is the only element satisfying the equation $g^{2}=g$ in G.
2. Let $G=\{x \in \mathbb{R}: x \neq-1\}$, and define $x * y:=x+y+x y$ (where $x y$ denotes the usual product of two real numbers). Show that $(G, *)$ is a group. What is the inverse 2^{-1} of the element 2 in G ? Solve the equation $2 * x * 5=6$ in G.
3. Let H and K be subgroups of a group G. Prove that the intersection $H \cap K$ is a subgroup of G. Prove that the union $H \cup K$ is a subgroup of G if and only if either $H \subseteq K$ or $K \subseteq H$.
4. Let $X \subseteq G$. Show that the following definitions are equivalent.
(i) $\langle X\rangle$ is the intersection of all subgroups containing X.
(ii) $\langle X\rangle$ is the smallest subgroup containing X, i.e. $\langle X\rangle \leqslant H$ whenever $X \subseteq H \leqslant G$.
5. Let G be a finite group.
(a) Let $g \in G$. Show that there is a positive integer n such that $g^{n}=e$. (The least such n is called the order of g.)
(b) Show that there exists a positive integer n such that $g^{n}=e$ for all $g \in G$.
6. Let S be a finite non-empty set of non-zero complex numbers which is closed under multiplication. Show that S is a subset of the set $\{z \in \mathbb{C}:|z|=1\}$. Show that S is a group with respect to multiplication, and deduce that for some $n \in \mathbb{N}, S$ is the set of nth roots of unity, that is, $S=\left\{e^{2 \pi i k / n}: k=0,1, \ldots, n-1\right\}$.
7. Let G be a group in which every element other than the identity has order two. Show that G is abelian. Show that if G is also finite, then the order of G is a power of 2. (Consider a minimal generating set for G.) Can such a group be infinite?
8. Let G be a group of even order. Show that G contains an element of order two. Can a group have exactly two elements of order two?

* Which (not necessarily finite) groups have a non-zero even number of elements of order two?

9. Let G be a finite group and let $\theta: G \rightarrow H$ be a homomorphism to a group H. Let $g \in G$.
(a) Show that the order of $\theta(g)$ is finite and divides the order of g.
(b) Define the kernel of θ to be $\operatorname{Ker}(\theta)=\left\{g \in G: \theta(g)=e_{H}\right\}$. Prove that $\operatorname{Ker}(\theta)$ is a subgroup of G. Furthermore, suppose $g \in G$ and $k \in \operatorname{Ker}(\theta)$, show that $g k g^{-1} \in \operatorname{Ker}(\theta)$.
10. Let H and G be groups and let $X \subseteq G$ such that $\langle X\rangle=G$. Show that a homomorphism $G \rightarrow H$ is uniquely determined by its image on X : that is, if $\varphi: G \rightarrow H$ and $\psi: G \rightarrow H$ are homomorphisms such that $\varphi(x)=\psi(x)$ for all $x \in X$, then $\varphi(g)=\psi(g)$ for all $g \in G$.
11. Let C_{n} be the cyclic group of order n. If n is odd, show that the only homomorphism $\theta: D_{2 n} \rightarrow C_{n}$ is the trivial homomorphism, i.e. $\theta(g)=e$ for all $g \in D_{2 n}$. Find all homomorphisms $D_{2 n} \rightarrow C_{n}$ when n is even. How many isomorphisms $C_{n} \rightarrow C_{n}$ are there?
12. Prove that every subgroup of a cyclic group is cyclic. Draw the subgroup lattice diagram for C_{24}.
*13. Is there an infinite group all of whose proper subgroups are finite?
