Michaelmas 2021 rdc26@cam.ac.uk

- 1. Throughout this question 'identify' means 'to find a standard group that it is isomorphic to'.
 - (a) Let $H \leq C_n$. Identify the quotient C_n/H .
 - (b) Show that $N = \{e, (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of S_4 . Identify the quotient S_4/N .
 - (c) Show that any subgroup $N \leq D_{2n}$ consisting only of rotations is normal. Identify the quotient D_{2n}/N .
 - (d) Given a group G, let G^2 denote the direct product $G \times G$. Consider the subgroup \mathbb{Z}^2 of the group \mathbb{R}^2 . Identify the quotient $\mathbb{R}^2/\mathbb{Z}^2$.
- 2. Given subgroups H and N of a group G, show that $HN = \{hn : h \in H, n \in N\}$ is a subgroup of G if N is normal in G. If H and N are both finite, prove that $|HN| = \frac{|H| \cdot |N|}{|H \cap N|}$.
- 3. (a) Let H be a subgroup of a group G. Show that H is normal in G if and only if H is a union of some conjugacy classes of G.
 - (b) Let N be a normal subgroup of index m in G. Show that $g^m \in N$ for any $g \in G$.
- 4. Let G be a group acting on a set X. If for $x, y \in X$, there is a $g \in G$ such that g(x) = y, show that $\operatorname{Stab}(y) = g \operatorname{Stab}(x) g^{-1}$.
- 5. Let G be a finite abelian group acting faithfully on a finite set X. Show that if the action is transitive, then |G| = |X|.
- 6. Show that D_{2n} has one conjugacy class of reflections if n is odd, and two conjugacy classes of reflections if n is even.
- 7. Let G be a finite group. Show that $g(H) = gHg^{-1}$ defines an action of G on the set of subgroups of G. Show that for $H \leq G$, the size of the orbit of H under this action is at most |G:H|. Deduce that if $H \neq G$, then G is not the union of all conjugates of H.
- 8. (a) Let G be a finite group and let H be a subgroup of index $k \neq 1$ in G. Suppose that |G| does not divide k!. By considering the action of G on the set of left cosets of H in G, show that H contains a non-trivial normal subgroup of G.
 - (b) Show that if a group G of order 28 has a normal subgroup of order 4, then G is abelian.
- 9. Let G be a finite group acting on a set X, and let $Fix(g) = \{x \in X : g(x) = x\}$ be the set of points fixed by g. By counting the set $\{(g,x) \in G \times X : g(x) = x\}$ in two ways, show that the number of orbits of the action is equal to

$$\frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

Deduce that if G acts transitively and |X| > 1, then there is some $g \in G$ with no fixed point. *How many distinct ways are there to colour the faces of a cube with three colours? Here, we consider two colourings to be distinct if one can not be obtained from the other via a rotation.

- 10. Let p be a prime and let G be a group of order p^2 . By considering the conjugation action of G on itself, show that G is abelian. Furthermore, show that up to isomorphism there are just two groups of that order for each prime p.
- *11. Let G be a (not necessarily finite) group generated by a finite set X. Prove that the number of subgroups of a given index n in G is finite, and give a bound for this number in terms of n and |X|.