IA Groups - Example Sheet 4

Michaelmas 2020

ak467@cam.ac.uk

- 1. Find the centre of S_n , and of A_n , for all n.
- 2. Given $\sigma \in A_n$, show that the conjugacy class of σ splits in A_n if and only if the cycles (including singletons) in the disjoint cycle decomposition of σ have distinct odd lengths.
- 3. Determine the sizes of the conjugacy classes in A_6 . Deduce that A_6 is a simple group.
- 4. Construct a Möbius map that maps $\{z \in \mathbb{C} : |z-1| < 1\}$ onto $\{z \in \mathbb{C} : |z| > 2\} \cup \{\infty\}$.
- 5. Let G be the subgroup of Möbius maps that send the set $\{0, 1, \infty\}$ to itself. What are the elements of G? Which standard group is isomorphic to G? Find the group of Möbius maps that send the set $\{0, 2, \infty\}$ to itself, with as little calculation as possible.
- 6. Determine the conditions on $\lambda, \mu \in \mathbb{C}$ under which the Möbius maps $f(z) = \lambda z$ and $g(z) = \mu z$ are conjugate in \mathcal{M} .
- 7. Let G be the subset of $SL_3(\mathbb{R})$ consisting of all matrices of the form

$$\begin{pmatrix} a & 0 & 0 \\ b & w & x \\ c & y & z \end{pmatrix}$$

Show that G is a subgroup of $SL_3(\mathbb{R})$. Construct a surjective homomorphism from G to $GL_2(\mathbb{R})$ and find its kernel.

8. Let G be the set of all matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

Show that G is a subgroup of $GL_3(\mathbb{R})$. Let $H \subset G$ be the subset of those matrices with a = c = 0. Show that H is a normal subgroup of G and determine the quotient group G/H.

9. Find the orbits of the actions of the subgroups H and K of $GL_2(\mathbb{R})$ on \mathbb{R}^2 , where

$$H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{R}) \right\}, \text{ and } K = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in GL_2(\mathbb{R}) \right\}.$$

- 10. Show that the only normal subgroup of O_2 containing a reflection is O_2 itself.
- 11. (a) Find a surjective homomorphism from O_3 to C_2 , and another from O_3 to SO_3 .
 - (b) Prove that O₃ ≈ SO₃ × C₂.
 (c) Is O₄ ≈ SO₄ × C₂?
- 12. Use cross-ratios to prove Ptolemy's Theorem: "For any quadrilateral whose vertices lie on a circle, the product of the lengths of the diagonals equals the sum of the products of the lengths of pairs of opposite sides."
- 13. Let $SL_2(\mathbb{R})$ act on \mathbb{C} via Möbius maps. Find the orbit and stabiliser of i and ∞ . By considering the orbit of i under the action of the stabiliser of ∞ , show that every $g \in SL_2(\mathbb{R})$ can be written as g = hk with h an upper-triangular matrix (i.e. one with all coefficients below the diagonal equal to 0) and $k \in SO_2$.
- 14. Prove that S_n has a subgroup isomorphic to Q_8 if and only if $n \ge 8$. *Does $GL_2(\mathbb{R})$ have a subgroup isomorphic to Q_8 ?
- *15. Let G be a finite non-trivial subgroup of SO_3 . Let X be the set of points on the unit sphere in \mathbb{R}^3 which are fixed by at least one non-trivial rotation in G. Show that G acts on X and that the number of orbits is either 2 or 3. What is G if there are only two orbits?