IA Groups - Example Sheet 2

1. Show that the dihedral group D_{12} is isomorphic to the direct product $D_{6} \times C_{2}$. Is D_{16} isomorphic to $D_{8} \times C_{2}$?
2. Write the following permutations as products of disjoint cycles, and compute their order and sign:
(a) $(123)(1234)(132)$,
(b) $(123)(235)(345)(45)$.
3. Show that S_{n} is generated by each of the following sets of permutations:
(a) the set of transpositions $\{(j j+1): 1 \leq j<n\}$,
(b) the set of transpositions $\{(1 k): 1<k \leq n\}$,
(c) the set $\{(12),(123 \cdots n)\}$.
4. What is the largest possible order of an element in S_{5} ? And in S_{9} ? Show that every element in S_{10} of order 14 is odd.
5. Let H be a subgroup of S_{n}. Show that if H contains an odd element, then exactly half of its elements are odd.
6. Show that S_{4} has a subgroup of order d for each divisor d of $\left|S_{4}\right|$, and find two non-isomorphic subgroups of order 4. Give an example of a group G and a divisor d of $|G|$ such that G has no subgroup of order d.
7. (a) Let G be a finite group and let K and H be subgroups of G, with $K \leqslant H$. Show that $|G: K|=|G: H| \cdot|H: K|$.
(b) Let G be a (possibly infinite) group, and let H and K be subgroups of finite index in G (i.e. $|G: K|<\infty,|G: H|<\infty)$. Show that $H \cap K$ is also of finite index in G.
8. (a) Show that if a group G contains an element of order 6 , and an element of order 10 , then G has order at least 30 .
(b) Let G be a group of order 85 , and let H be a subgroup of G containing at least 18 elements. Determine H.
9. What is the order of the Möbius map $f(z)=i z$? Which points are fixed by f, i.e. for which $z \in \widehat{\mathbb{C}}$ do we have $f(z)=z$? If h is another Möbius map, find the order and fixed points of $h f h^{-1}$. Construct a Möbius map of order 4 that fixes 1 and -1 .
10. Give an example to show that if K is a normal subgroup of H, and H is a normal subgroup of G, then K is not necessarily a normal subgroup of G.
11. Let H be a subgroup of a group G. Find the largest normal subgroup of G contained in H in terms of H and the elements of G.
12. Show that a group of order 10 is either cyclic or dihedral. *Extend your proof to groups of order $2 p$, with p an odd prime.
*13. Must a group of order 55 have elements of order 5 and of order 11? Must a group of order 55 be cyclic? Must a group of order 65 have elements of order 5 and of order 13? Must a group of order 65 be cyclic?
*14. Which groups have exactly three subgroups?
