Groups: Example Sheet 1 of 4

1. Let G be any group. Show that the identity e is the unique solution of the equation $x^{2}=x$ in G.
2. Let H_{1} and H_{2} be two subgroups of the group G. Show that the intersection $H_{1} \cap H_{2}$ is a subgroup of G. Show that the union $H_{1} \cup H_{2}$ is a subgroup of G if and only if one of the H_{i} contains the other.
3. Let $G=\{x \in \mathbb{R}: x \neq-1\}$, and let $x * y=x+y+x y$, where $x y$ denotes the usual product of two real numbers. Show that $(G, *)$ is a group. What is the inverse 2^{-1} of 2 in this group? Solve the equation $2 * x * 5=6$.
4. Let G be a finite group. Show that every element of G has finite order. Show that there exists a positive integer n such that for all $g \in G$ we have $g^{n}=e$.
5. Show that the set G of complex numbers of the form $\exp (i \pi t)$ with t rational is a group under multiplication (with identity 1). Show that G is infinite, but that every element a of G has finite order.
6. Let G be a finite group and f a homomorphism from G to H. Let $a \in G$. Show that the order of $f(a)$ is finite and divides the order of a.
7. Let C_{n} be the cyclic group with n elements and $D_{2 n}$ the group of symmetries of the regular n-gon. If n is odd and $\theta: D_{2 n} \rightarrow C_{n}$ is a homomorphism, show that $\theta(g)=e$ for all $g \in D_{2 n}$. Can you find all homomorphisms $D_{2 n} \rightarrow C_{n}$ if n is even? Find all homomorphisms $C_{n} \rightarrow C_{m}$.
8. Show that any subgroup of a cyclic group is cyclic.
9. Consider the Möbius maps $f(z)=e^{2 \pi i / n} z$ and $g(z)=1 / z$. Show that the subgroup G of the Möbius group \mathcal{M} generated by f and g is isomorphic to $D_{2 n}$.
10. Express the Möbius transformation $f(z)=\frac{2 z+3}{z-4}$ as the composition of maps of the form $z \mapsto a z, z \mapsto z+b$ and $z \mapsto 1 / z$. Hence show that f maps the circle $|z-2 i|=2$ onto the circle $|8 z+(6+11 i)|=11$.
11. Let G be the subgroup of Möbius transformations that map the set $\{0,1, \infty\}$ to itself. What are the elements of G ? Which standard group is isomorphic to G ? What is the group of Möbius transformations that map the set $\{0,2, \infty\}$ to itself.
12. (a) Is the Möbius group generated by Möbius transformations of the form $z \mapsto a z$ and $z \mapsto z+b$? Why/why not?
(b) Is the Möbius group generated by Möbius transformations of the form $z \mapsto a z$ and $z \mapsto 1 / z$? Why/why not?
(c) Is the Möbius group generated by Möbius transformations of the form $z \mapsto z+b$ and $z \mapsto 1 / z$? Why/why not?
13. Show that an invertible function $f: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$ that preserves the cross-ratio, i.e. such that

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right] \text { for all distinct } z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}_{\infty}
$$

is a Möbius transformation.
14. Let G be a group in which every element other than the identity has order two. Show that G is abelian. *Show also that if G is finite, the order of G is a power of 2 .
15. Let G be a group of even order. Show that G contains an element of order two.
16. Show that every isometry of \mathbb{C} is either of the form $z \mapsto a z+b$ or the form $z \mapsto a \bar{z}+b$ with $a, b \in \mathbb{C}$ and $|a|=1$ in either case. *Describe the finite subgroups of the group of isometries of \mathbb{C}.

