## Groups Example Sheet 1

1. Let $G$ be any group. Show that the identity $e$ is the unique solution of the equation $a^{2}=a$.
2. Let $H_{1}$ and $H_{2}$ be two subgroups of the group $G$.

Show that the intersection $H_{1} \cap H_{2}$ is a subgroup of $G$.
Show that the union $H_{1} \cup H_{2}$ is a subgroup of $G$ if and only if one of the $H_{i}$ contains the other.
3. Show that the set of functions on $\mathbb{R}$ of the form $f(x)=a x+b$, where $a$ and $b$ are real numbers and $a \neq 0$, forms a group under composition of functions. Is this group abelian?
4. Let $G$ be a finite group.
(a) Let $a \in G$. Show that there is a positive integer $n$ such that $a^{n}=e$, the identity element. (The least such positive $n$ is the order of $a$.)
(b) Show that there exists a positive integer $n$ such that $a^{n}=e$ for all $a \in G$. (The least such positive $n$ is the exponent of $G$.)
5. Show that the set $G$ of complex numbers of the form $\exp (i \pi t)$ with $t$ rational is a group under multiplication (with identity 1). Show that $G$ is infinite, but that every element $a$ of $G$ has finite order.
6. Let $S$ be a finite non-empty set of non-zero complex numbers which is closed under multiplication. Show that $S$ is a subset of the set $\{z \in \mathbb{C}:|z|=1\}$. Show that $S$ is a group, and deduce that for some $n \in \mathbb{N}, S$ is the set of $n$-th roots of unity; that is, $S=\{\exp (2 k \pi i / n): k=0, \ldots, n-1\}$.
7. Let $G=\{x \in \mathbb{R}: x \neq-1\}$, and let $x * y=x+y+x y$, where $x y$ denotes the usual product of two real numbers. Show that $(G, *)$ is a group. What is the inverse $2^{-1}$ of 2 in this group? Solve the equation $2 * x * 5=6$.
8. Let $G$ be a group in which every element other than the identity has order two. Show that $G$ is abelian. Show also that if $G$ is finite, the order of $G$ is a power of 2 . [Consider a minimal generating set.]
9. Let $G$ be a group of even order. Show that $G$ contains an element of order two.
10. Let $G$ be a finite group and $f$ a homomorphism from $G$ to $H$. Let $a \in G$. Show that the order of $f(a)$ is finite and divides the order of $a$.
11. Show that the dihedral group $D_{12}$ is isomorphic to the direct product $D_{6} \times C_{2}$. Is $D_{16}$ isomorphic to $D_{8} \times C_{2}$ ?
12. How many homomorphisms $D_{2 n} \longrightarrow C_{n}$ are there? How many isomorphisms $C_{n} \longrightarrow C_{n}$ ?

