IA Groups: Example Sheet 4

1. Consider the Möbius maps $f(z)=e^{2 \pi i / n} z$ and $g(x)=1 / z$. Show that the subgroup G of the Möbius group \mathcal{M} generated by f and g is a dihedral group of order $2 n$.
2. Let $g(z)=(z+1) /(z-1)$. By considering the points $g(0), g(\infty), g(1)$ and $g(i)$, find the image of the real axis \mathbb{R} and of the imaginary axis \mathbb{I} under g. What is $g(\Sigma)$, where Σ is the first quadrant in \mathbb{C} ?
3. What is the order of the Möbius map $f(z)=i z$? If h is any Möbius map, find the order of $h f h^{-1}$ and its fixed points. Use this to construct a Möbius map of order four that fixes 1 and -1 .
4. Let G be the set of all 3×3 matrices of the form

$$
\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right),
$$

with $x, y, z \in \mathbb{R}$. Show that G is a subgroup of the group of invertible real matrices under multiplication. Let H be the subset of G given by those matrices with $x=z=0$. Show that H is a normal subgroup of G and identify G / H.
5. Show that the set $S L_{2}(\mathbb{Z})$ of all 2×2 matrices of determinant 1 with integer entries is a group under multiplication.
6. Let G be the group of Möbius transformations which map the set $\{0,1, \infty\}$ onto itself. Find all the elements in G. To which standard group is G isomorphic? Justify your answer.
Find the group of Möbius transformations which map the set $\{0,2, \infty\}$ onto itself. [Try to do as little calculation as possible.]
7. Let G be as in the previous question. Show that, given $\sigma \in S_{4}$, there exists $f_{\sigma} \in G$ for which, whenever z_{1}, z_{2}, z_{3} and z_{4} are four distinct points in \mathbb{C}_{∞}, we have $f_{\sigma}\left(\left[z_{1}, z_{2}, z_{3}, z_{4}\right]\right)=\left[z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}, z_{\sigma(4)}\right]$. [You may want to start with σ a transposition in S_{4}.]
Show that the map $\sigma \mapsto f_{\sigma^{-1}}$ from S_{4} to G gives a homomorphism from S_{4} onto S_{3}. Find its kernel.
8. The centre of a group G consists of all those elements of G that commute with all the elements of G. Show that the centre Z of the general linear group $G L_{2}(\mathbb{C})$ consists of all scalar matrices. Identify the centre of the special linear group $S L_{2}(\mathbb{C})$.
9. Let G be the set of all 3×3 real matrices of determinant 1 of the form

$$
\left(\begin{array}{ccc}
a & 0 & 0 \\
b & x & y \\
c & z & w
\end{array}\right)
$$

Verify that G is a group. Find a homomorphism from G onto the group $G L_{2}(\mathbb{R})$ of all non-singular 2×2 real matrices, and find its kernel.
10. When do two elements of SO_{3} commute?
11. Let K be a normal subgroup of order 2 in the group G. Show that K lies in the centre of G, that is $k g=g k$ for all $k \in K$ and $g \in G$.
Describe a surjective homomorphism of the orthogonal group $O(3)$ onto C_{2} and another onto the special orthogonal group $S O(3)$.
12. If A is a complex $n \times n$ matrix with entries $a_{i j}$, let A^{*} be the complex $n \times n$ matrix \bar{A}^{t} with entries $\overline{a_{j i}}$. The matrix A is called unitary if $A A^{*}=I$. Show that the set $U(n)$ of unitary matrices forms a group under matrix multiplication. Show that

$$
S U(n)=\{A \in U(n): \operatorname{det} A=1\}
$$

is a normal subgroup of $U(n)$ and that $U(n) / S U(n)$ is isomorphic to S^{1}, the group of the unit circle in \mathbb{C} under multiplication.
Show that $S U(2)$ contains the quaternion group Q_{8} as a subgroup.
13. Let G be the special linear group $S L_{2}(5)$ of 2×2 matrices of determinant 1 over the field \mathbb{F}_{5} of integers modulo 5 , so that the arithmetic in G is modulo 5 . Show that G is a group of order 120 . Prove that $-I$ is the only element of G of order 2 .
Find a subgroup of G isomorphic to Q_{8}, and an element of order 3 normalising it in G. Deduce that G has a subgroup of index 5 , and obtain a homomorphism from G to S_{5}. Deduce that $S L_{2}(5) /\{ \pm I\}$ is isomorphic to the alternating group A_{5}. [Note that no proper subgroup of A_{5} has more than one subgroup of order 5.]
Show that $S L_{2}(5)$ has no subgroup isomorphic to A_{5}.

Comments and corrections should be sent to rdc26@dpmms.cam.ac.uk.

