## IA Groups: Example Sheet 3

1. Let $G$ be a group. If $H$ is a normal subgroup of $G$ and $K$ is a normal subgroup of $H$, is $K$ a normal subgroup of $G$ ?
2. Let $K$ be a normal subgroup of index $m$ in the group $G$. Show that $g^{m} \in K$ for any element $g \in G$.
3. Let $H$ be a subgroup of the cyclic group $C_{n}$. What is the quotient $C_{n} / H$ ?

Let $D_{2 n}$ be the group of symmetries of a regular $n$-gon. Show that any subgroup $K$ of rotations is normal in $D_{2 n}$, and identify the quotient $D_{2 n} / K$.
4. Show that $D_{2 n}$ has two conjugacy classes of reflections if $n$ is even, but only one if $n$ is odd.
5. Let $D_{8}$ be the dihedral group of order 8. Find the conjugacy classes of $D_{8}$ and their sizes. Show that the centre $Z$ of the group has order 2 , and identify the quotient group $D_{8} / Z$ of order 4 .
Repeat with the quaternion group $Q_{8}$.
6. Let $Q$ be a plane quadrilateral. Show that its group $G(Q)$ of symmetries has order at most 8 . For which $n$ in the set $\{1,2, \ldots, 8\}$ is there a quadrilateral $Q$ with $G(Q)$ of order $n$ ?
7. What is the group of all rotational symmetries of a Toblerone chocolate bar, a solid triangular prism with an equilateral triangle as a cross-section, with ends orthogonal to the longitudinal axis of the prism? And the group of all symmetries?
8. Show that the subgroup $H$ of the group $G$ is normal in $G$ if and only if $H$ is the union of some conjugacy classes of $G$.
Show that the symmetric group $S_{4}$ has a normal subgroup (usually denoted $V_{4}$ ) of order 4.
To which group of order 6 is the quotient group $S_{4} / V_{4}$ isomorphic?
Find an action of $S_{4}$ giving rise to this isomorphism.
9. Suppose that the group $G$ acts on the set $X$. Let $x \in X$, let $y=g(x)$ for some $g \in G$. Show that the stabiliser $G_{y}$ equals the conjugate $g G_{x} g^{-1}$ of the stabiliser $G_{x}$.
10. Let $G$ be a finite group and let $X$ be the set of all subgroups of $G$. Show that $G$ acts on $X$ by $g: H \mapsto g H g^{-1}$ for $g \in G$ and $H \in X$, where $g H g^{-1}=\left\{g h g^{-1}: h \in H\right\}$. Show that the orbit containing $H$ in this action of $G$ has size at most $|G| /|H|$. If $H$ is a proper subgroup of $G$, show that there exists an element of $G$ which is contained in no conjugate $g H g^{-1}$ of $H$ in $G$.
11. Let $G$ a finite group of prime power order $p^{a}$, with $a>0$. By considering the conjugation action of $G$, show that the centre $Z$ of $G$ is non-trivial.
Show that any group of order $p^{2}$ is abelian, and that there are up to isomorphism just two groups of that order for each prime $p$.
12. Find the conjugacy classes of elements in the alternating group $A_{5}$, and determine their sizes. Show that $A_{5}$ has no non-trivial normal subgroups (so $A_{5}$ is a simple group). Show that if $H$ is a proper subgroup of index $n$ in $A_{5}$ then $n>4$. [Consider the left coset action of $A_{5}$ on the set of left cosets of $H$ in $A_{5}$.]
13. Let $G$ be a finite group of order $p^{a} m$, where $p^{a}$ is the highest power of the prime $p$ dividing $|G|$. Let $X$ be the set of all subsets of $G$ of size $p^{a}$. Show that $G$ acts on $X$ by $g: A \mapsto g A$ for $g \in G$ and $A \in X$. Show that $X$ has size prime to $p$, and deduce that there is a $G$-orbit $X^{\prime}$ of $G$ on $X$ of size prime to $p$. By considering the stabiliser of an element in $X^{\prime}$, show that $G$ has a subgroup of order $p^{a}$, a Sylow subgroup of $G$.

Comments and corrections should be sent to saxl@dpmms.cam.ac.uk.

