GROUPS EXAMPLES 2

G.P. Paternain Michaelmas 2008

The questions on this sheet are not all equally difficult and the harder ones are marked with $*$'s. Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Show that if a group G contains an element of order six, and an element of order ten, then G has order at least 30 .
2. Show that the set $\{1,3,5,7\}$, with multiplication modulo 8 is a group. Is this group isomorphic to C_{4} or $C_{2} \times C_{2}$?
3. How many subgroups of order four does the quaternion group \mathbb{H}_{8} have?
4. Let H be a subgroup of a group G. Show that if $a H=b H$ then $H a^{-1}=H b^{-1}$. Use this to show that there is a bijection between the set of left cosets and the set of right cosets of H.
5. What is the order of the Möbius map $f(z)=i z$? If h is any Möbius map, find the order of $h f h^{-1}$ and its fixed points. Use this to construct a Möbius map of order four that fixes 1 and -1 .
6. Let $X=\{1,2,3,4,5,6\}$, and let G be the cyclic group generated by the permutation $\sigma(1)=2$, $\sigma(2)=1, \sigma(3)=4, \sigma(4)=5, \sigma(5)=6, \sigma(6)=3$. Since G is a subgroup of S_{6}, it acts on X. Find all orbits and stabilizers for the action of G on X and check that your answers are consistent with the Orbit-stabilizer theorem.
7. Show that $\rho(t,(x, y))=\left(e^{t} x, e^{-t} y\right)$, where $t \in \mathbb{R}$ and $(x, y) \in \mathbb{R}^{2}$, defines an action of $(\mathbb{R},+)$ on \mathbb{R}^{2}. Describe the orbits of the action and find all possible stabilizers.
8. Suppose that G acts on X and that $y=g x$, where $x, y \in X$ and $g \in G$. Show that $\operatorname{Stab}(y)=$ $g \operatorname{Stab}(x) g^{-1}$ (hence, the stabilizers of two points in the same orbit are conjugate).
9. Let G be a finite group and let X be the set of all it subgroups. Given $g \in G$ and $H \in X$ show that $(g, H) \mapsto g H g^{-1}$ defines an action of G on X. Show that the orbit of H has at most $|G| /|H|$ elements. If $H \neq G$, show that there is an element in G which does not belong to any conjugate of H.
10. Show that $D_{2 n}$ (the group of symmetries of the regular n-gon) has one conjugacy class of reflections if n is odd, and two conjugacy classes of reflections if n is even.
11. Let G be the group of all symmetries of the cube and let ℓ be the line between two diagonally opposite vertices. Let $H=\{g \in G: g \ell=\ell\}$. Show that H is a subgroup of G isomorphic to $S_{3} \times C_{2}$.
12. Classify all groups of order 10.
13. Let S^{1} denote the unit circle in \mathbb{C} and let $S^{3}=\left\{\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2}:\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}=1\right\}$. Show that given $\left(t_{1}, t_{2}\right) \in S^{1} \times S^{1}$ and $\left(w_{1}, w_{2}\right) \in S^{3}$,

$$
\left(\left(t_{1}, t_{2}\right),\left(w_{1}, w_{2}\right)\right) \mapsto\left(t_{1} w_{1}, t_{2} w_{2}\right)
$$

defines an action of $S^{1} \times S^{1}$ on S^{3}. Describe the orbits and find all stabilizers.
14^{*}. Let p be a prime. Show that every group of order p^{2} is abelian. [Hint: consider the action of the group on itself by conjugation.]

