GROUPS EXAMPLES 1

G.P. Paternain Michaelmas 2008

The questions on this sheet are not all equally difficult and the harder ones are marked with $*$'s. Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Let G be any group. Show that the identity e is the unique solution of the equation $x^{2}=x$.
2. Let G be any group. Given $g \in G$, show by induction that $g^{m+n}=g^{m} g^{n}$ for all integers m and n.
3. Let G be a finite group. Show that there exists a positive integer n such that $g^{n}=e$ for all $g \in G$ (the n that you find must be independent of g).
4. Let $G=\{x \in \mathbb{R}: x \neq-1\}$, where \mathbb{R} is the set of real numbers, and let $x * y=x+y+x y$, where $x y$ denotes the usual product of two real numbers. Show that $(G, *)$ is a group. What is the inverse 2^{-1} of 2 in this group? Solve the equation $2 * x * 5=6$.
5. Let S be a finite subgroup of the multiplicative group of non-zero complex numbers. Show that for some positive integer n, S is exactly the group of n-th roots of unity.
6 Let $\theta: G \rightarrow K$ be a homomorphism between finite groups. Given $g \in G$, show that the order of $\theta(g)$ must divide the order of g. Describe all the homomorphisms from C_{n} to C_{m}, in particular, what happens if n and m are coprime?
6. Let C_{n} be the cyclic group with n elements and $D_{2 n}$ the group of symmetries of the regular n-gon. If n is odd and $\theta: D_{2 n} \rightarrow C_{n}$ is a homomorphism, show that $\theta(g)=e$ for all $g \in D_{2 n}$. What can you say if n is even?
7. Consider the Möbius maps $f(z)=e^{2 \pi i / n} z$ and $g(z)=1 / z$. Show that the subgroup G of the Möbius group \mathcal{M} generated by f and g is a dihedral group. ["Generated" here means that every element in G is the product of elements of the form f, g, f^{-1} and g^{-1}.]
8. Express the Möbius tranformation $f(z)=(2 z+3) /(z-4)$ as the composition of maps of the form $z \mapsto a z, z \mapsto z+b$ and $z \mapsto 1 / z$. Hence show that f maps the circle $|z-2 i|=2$ onto the circle $|8 z+(6+11 i)|=11$.
9. Let G be the subgroup of Möbius transformations which map the set $\{0,1, \infty\}$ onto itself. Find all the elements in G. To which standard group is G isomorphic? Find the group of Möbius transformations which map the set $\{0,2, \infty\}$ onto itself.
10. Show that a subgroup of a cyclic group is cyclic.
11. Let G be a group in which every element other than the identity has order two. Show that G is abelian.
12. Let G be a group of even order. Show that G contains an element of order two.

14*. Describe the finite subgroups of the group of isometries of the plane. [If we think of the plane as \mathbb{C} you may assume that all isometries have the form $z \mapsto a z+b$ or $z \mapsto a \bar{z}+b$, where a and b are complex numbers and in both cases $|a|=1$. Hint: is there a point in the plane fixed by all the elements in the group?]

