GROUPS EXAMPLES 4

G.P. Paternain Michaelmas 2007

The questions on this sheet are not all equally difficult and the harder ones are marked with $*$'s. Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Write the following permutations as products of disjoint cycles and compute their order and sign:
(a) $(12)(1234)(12)$;
(b) $(123)(45)(16789)(15)$.
2. What is the largest possible order of an element in S_{5} ? And in S_{9} ? Show that every element in S_{10} of order 14 is odd.
3. Show that any subgroup of S_{n} which is not contained in A_{n} contains an equal number of odd and even permutations.
4. Let N be a normal subgroup of the orthogonal group $O(2)$. Show that if N contains a reflection in some line through the origin, then $N=O(2)$.
5. Show that S_{n} is generated by the two elements (12) and $(123 \ldots n)$.
6. Let z_{1}, z_{2}, z_{3} and z_{4} be four distinct points in \mathbb{C}_{∞} and let $\lambda=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$ be the cross ratio of the four points. Let G be the group of Möbius maps which map the set $\{0,1, \infty\}$ onto itself. Show that given $\sigma \in S_{4}$, there exists $f_{\sigma} \in G$ such that $f_{\sigma}(\lambda)=\left[z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}, z_{\sigma(4)}\right]$.
7. Show that the map $S_{4} \ni \sigma \mapsto f_{\sigma^{-1}} \in G \cong S_{3}$ given by the previous question is a surjective homomorphism. Find its kernel.
8. Let H be a normal subgroup of a group G and let K be a normal subgroup of H. Is it true that K must be a normal subgroup of G ?
9. Let X be the set of all 2×2 real matrices with trace zero. Given $A \in S L(2, \mathbb{R})$ and $B \in X$, show that

$$
(A, B) \mapsto A B A^{-1}
$$

defines an action of $S L(2, \mathbb{R})$ on X. Find the orbit and stabilizer of

$$
B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Show that the set of matrices in X with zero determinant is a union of 3 orbits.
10. When do two elements in $S O(3)$ commute?
11. If A is a complex $n \times n$ matrix with entries $a_{i j}$, let A^{*} be the complex $n \times n$ matrix with entries $\bar{a}_{j i}$. The matrix A is called unitary if $A A^{*}=I$. Show that the set $U(n)$ of unitary matrices forms a group under matrix multiplication. Show that

$$
S U(n)=\{A \in U(n): \operatorname{det} A=1\}
$$

is a normal subgroup of $U(n)$ and that $U(n) / S U(n)$ is isomorphic to S^{1}. Show that $S U(2)$ contains the quaternion group \mathbb{H}_{8} as a subgroup.
12. Show that any subgroup of A_{5} has order at most 12.
13. Find the elements in S_{n} that commute with (12).
14^{*}. Let G be a finite non-trivial subgroup of $S O(3)$. Let X be the set of points on the unit sphere in \mathbb{R}^{3} which are fixed by some non-trivial rotation in G. Show that G acts on X and that the number of orbits is either 2 or 3 . What is G if there are only two orbits? [With more work one can show that if there are three orbits, then G must be dihedral or the group of rotational symmetries of a Platonic solid.]

