GROUPS EXAMPLES 3

G.P. Paternain Michaelmas 2007

The questions on this sheet are not all equally difficult and the harder ones are marked with *'s. Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. If H is a subgroup of a finite group G and G has twice as many elements as H, show that H is normal in G.
2. Let H be a subgroup of the cyclic group C_{n}. What is C_{n} / H ?
3. Show that every subgroup of rotations in the dihedral group $D_{2 n}$ is normal.
4. Show that a subgroup H of a group G is normal if and only if it is a union of conjugacy classes.
5. We know that in an abelian group every subgroup is normal. Now, let G be a group in which every subgroup is normal, is it true that G must be abelian?
6. Show that \mathbb{Q} / \mathbb{Z} is an infinite group in which every element has finite order.
7. Let G be the set of all 3×3 matrices of the form

$$
\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)
$$

with $x, y, z \in \mathbb{R}$. Show that G is a subgroup of the group of invertible real matrices under multiplication. Let H be the subset of G given by those matrices with $x=z=0$. Show that H is a normal subgroup of G and find G / H. [Use the isomorphism theorem.]
8. Consider the additive group \mathbb{C} and the subgroup Γ consisting of all Gaussian integers $m+$ in, where $m, n \in \mathbb{Z}$. By considering the map

$$
x+i y \mapsto\left(e^{2 \pi i x}, e^{2 \pi i y}\right),
$$

show that the quotient group \mathbb{C} / Γ is isomorphic to the torus $S^{1} \times S^{1}$.
9. Let G be a finite group and $H \neq G$ a subgroup. Let k be the cardinality of the set of left cosets of H (k is sometimes called the index of H) and suppose that $|G|$ does not divide $k!$. Show that H contains a non-trivial normal subgroup of G. [Let G act on the set of left cosets.] Show that a group of order 28 has a normal subgroup of order 7 .
10. Show that if a group G of order 28 has a normal subgroup of order 4 , then G is abelian.
11. Let H be a subgroup of a group G. Show that H is a normal subgroup of G if and only if there is some group K, and some homomorphism $\theta: G \rightarrow K$, whose kernel is H.
12. Let $G L(2, \mathbb{R})$ be the group of all 2×2 invertible matrices and let $S L(2, \mathbb{R})$ be the subset of $G L(2, \mathbb{R})$ consisting of matrices of determinant 1 . Show that $S L(2, \mathbb{R})$ is a normal subgroup of $G L(2, \mathbb{R})$. Show that the quotient group $G L(2, \mathbb{R}) / S L(2, \mathbb{R})$ is isomorphic to the multiplicative group of non-zero real numbers.
13. Let G be a subgroup of the group of isometries of the plane. Show that the set T of translations in G is a normal subgroup of G (T is called the translation subgroup). [If we think of the plane as \mathbb{C} you may assume that all isometries have the form $z \mapsto a z+b$ or $z \mapsto a \bar{z}+b$, where a and b are complex numbers and in both cases $|a|=1$.]
14*. A frieze group is a group F of isometries of \mathbb{C} that leaves the real line invariant and whose translation subgroup T is infinite cyclic. If F is a frieze group, classify F / T.

