Analysis I

EXAMPLE SHEET 1

- 1. Let (x_n) be a real sequence with $x_n \neq 0$ for all n. If $x_n \to \infty$, show that $\frac{1}{x_n} \to 0$. If $x_n \to 0$, does it follow that $\frac{1}{x_n} \to \infty$? Now suppose that $x_n \to \infty$ and that (y_n) is a real sequence with $y_n \to y \in \mathbb{R}$. If y > 0, prove that $x_n y_n \to \infty$.
- 2. Prove that $x^n \to 0$ for $x \in (0, 1)$. (Do not assume the existence of the logarithm.)
- 3. Sketch the graphs of y = x and $y = (x^4 + 1)/3$ and thereby illustrate the behavior of the real sequence (x_n) where $x_{n+1} = (x_n^4 + 1)/3$. For which of the three starting cases $x_1 = 0$, $x_1 = 1$ and $x_1 = 2$ does the sequence converge? Prove your assertion.
- 4. Let $x_1 > y_1 > 0$ and define $x_{n+1} = (x_n + y_n)/2$, $y_{n+1} = 2x_n y_n/(x_n + y_n)$ for $n \ge 1$. Show that $x_n > x_{n+1} > y_{n+1} > y_n$ and deduce that the two sequences converge to a common limit. What is the limit?
- 5. The real sequence (x_n) is bounded but does not converge. Prove that it has two convergent subsequences with different limits.
- 6. For $\alpha \in \mathbb{R}$, let $\{\alpha\} = \alpha \lfloor \alpha \rfloor$ be the fractional part of α . Suppose $\alpha \in \mathbb{R}$ is an irrational number, and define $x_n = \{n\alpha\}$. For any $x \in [0, 1]$, show that (x_n) has a subsequence converging to x.
- 7. For a fixed value of t > 0, define $\exp(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!}$, and let $x_n = (1 + \frac{t}{n})^n$. Using the binomial theorem, show that the sequence (x_n) is monotone increasing and is bounded above by $\exp(t)$. Show further that $x_n \to \exp(t)$.
- 8. Investigate the convergence of the following series. For those expressions containing the complex number z, find the values of z for which the series converges.

$$\sum_{n} \frac{\sin n}{n^2} \qquad \sum_{n} \frac{n^2 z^n}{5^n} \qquad \sum_{n} \frac{(-1)^n}{4 + \sqrt{n}} \qquad \sum_{n} \frac{z^n (1-z)}{n}$$

- 9. Show that the series $\sum_{n\geq 2} \frac{1}{n(\log n)^{\alpha}}$ converges for $\alpha > 1$ and diverges otherwise. Does $\sum_{n\geq 3} \frac{1}{n\log n\log\log n}$ converge?
- 10. The two series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \dots$ and $1 + \frac{1}{3} \frac{1}{2} + \frac{1}{5} + \frac{1}{7} \frac{1}{4} + \dots$ have the same terms in different orders. Let s_n and t_n be the *n*th partial sums of these two series. Set $h_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Show that $s_{2n} = h_{2n} h_n$ and $t_{3n} = h_{4n} \frac{1}{2}h_{2n} \frac{1}{2}h_n$. Show that (s_n) tends to a limit s > 0 and (t_n) tends to $\frac{3}{2}s$.

11. Let $z \in \mathbb{C}$. Show that the series

$$\frac{z}{1-z^2} + \frac{z^2}{1-z^4} + \frac{z^4}{1-z^8} + \frac{z^8}{1-z^{16}} + \dots$$

converges to z/(1-z) if |z| < 1, converges to 1/(1-z) if |z| > 1, and diverges if |z| = 1.

- 12. Prove that every real sequence has a monotone subsequence. Deduce the Bolzano-Weierstrass theorem.
- 13. Let x be a real number and suppose the real series $\sum_n a_n$ converges, but does not converge absolutely. Prove the terms can be reordered so the resulting series converges to x. That is, there is a bijection $\pi : \mathbb{N} \to \mathbb{N}$ such that $\sum_n a_{\pi(n)} = x$.
- 14. Can the open interval (0,1) be written as a disjoint union of closed intervals of positive length?

J.Rasmussen@dpmms.cam.ac.uk