Analysis I

EXAMPLE SHEET 2

- 1. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ for $x \in \mathbb{Q}$ and $f(x) = -x^2$ for $x \notin \mathbb{Q}$. At which points is f continuous? Differentiable?
- 2. Prove that the absolute value function $|\cdot| : \mathbb{C} \to \mathbb{R}$ is continuous. You should work directly from the ϵ - δ definition of continuity; do not use continuity of the square root function.
- 3. Suppose that $f_k : [0,1] \to [0,1]$ is continuous for each $k \in \mathbb{N}$. Let $h_n(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}$. Show that h_n is continuous. Is the function h defined by $h(x) = \sup\{f_k(x) \mid k \in \mathbb{N}\}$ necessarily continuous?
- 4. Define a function $f : \mathbb{R} \to \mathbb{R}$ as follows. If x is irrational, then f(x) = 0, while if x is rational, then f(x) = 1/q, where q is the denominator of x. (That is, x = p/q, where p and q are coprime integers and q > 0.) Prove that f is continuous at every irrational and discontinuous at every rational.
- 5. Let $f : [0, 1], \rightarrow [0, 1]$ be a continuous function. Prove that there exists some $c \in [0, 1]$ with f(c) = c. Such a c is called a *fixed point* of f. Give an example of a bijection $g : [0, 1] \rightarrow [0, 1]$ with no fixed point. If $h : (0, 1) \rightarrow (0, 1)$ is a continuous bijection, must it have a fixed point?
- 6. Suppose $f : [a, b] \to \mathbb{R}$ is strictly increasing; that is f(x) < f(y) whenever x < y. Show that f is continuous if and only if f([a, b]) = [f(a), f(b)].
- 7. Let I be an interval and suppose that $f: I \to \mathbb{R}$ is continuous and injective. Show that $f^{-1}: f(I) \to I$ is continuous.
- 8. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) f(y)| \le |x y|^2$ for all $x, y \in \mathbb{R}$. Show that f is constant.
- 9. Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Which of the following statements are always true and which are sometimes false?
 - (a) If f is increasing, then $f'(x) \ge 0$ for every $x \in (a, b)$.
 - (b) If $f'(x) \ge 0$ for every $x \in (a, b)$, then f is increasing.
 - (c) If f is strictly increasing, then f'(x) > 0 for every $x \in (a, b)$.
 - (d) If f'(x) > 0 for every $x \in (a, b)$, then f is strictly increasing.
- 10. Prove that the equation $2x^5 + 3x^4 + 2x + 16 = 0$ has exactly one real root, and that this root is in the interval [-2, -1].

- 11. (i) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x + 2x^2 \sin(1/x)$ if $x \neq 0$ and f(0) = 0. Show that f is differentiable and that f'(0) = 1, but there is no interval around 0 on which f is increasing. (You may assume standard facts about $\sin x$, $\cos x$ and their derivatives.) (ii) Give an example of a differentiable function $g : \mathbb{R} \to \mathbb{R}$ with the property that g' is not bounded on the interval $(-\delta, \delta)$ for any $\delta > 0$.
- 12. Suppose $f : [a, b] \to \mathbb{R}$ is differentiable, and that f'(a) < k < f'(b). Show that there is some $c \in (a, b)$ with f'(c) = k. (Hint: consider g(x) = f(x) kx.)
- 13. Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that g(0) = g'(0) = 0 and g''(0) exists and is positive. Prove there exists x > 0 such that g(x) > 0. Now let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0 and f''(0) exists and is positive. Prove there is some x > 0 such that f(2x) > 2f(x).
- 14. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable, and that $f'(x) \to c$ as $x \to \infty$. Show that $f(x)/x \to c$ as $x \to \infty$. If $f(x)/x \to c$ as $x \to \infty$, must $f'(x) \to c$ as $x \to \infty$?
- 15. * Find a function $f : \mathbb{R} \to \mathbb{R}$ which takes every real value on every open interval. (In other words $f((a, b)) = \mathbb{R}$ for any a < b.)

J.Rasmussen@dpmms.cam.ac.uk