
Analysis I Lent term 2019

Example Sheet 4

1. Give an example of an integrable function f : [0, 1]→ R with f ≥ 0,
∫ 1

0
f(x)dx = 0,

and f(x) > 0 for some x ∈ [0, 1]. Show that this cannot happen if f is continuous.

2. Let f : R → R be monotonic. Show that {x ∈ R | f is discontinuous at x} is
countable. Let xn, n ≥ 1 be a sequence of distinct points in [0, 1) and define fn(x) =
0 if 0 ≤ x ≤ xn, fn(x) = 1 otherwise. Define f(x) =

∑∞
n=1 2−nfn(x). Show that

this series converges for all x ∈ [0, 1], and that f is integrable. Show that f is
discontinuous at every xn.

3. Define f : [0, 1] → R by f(p/q) = 1/q, where p, q ∈ N are relatively prime, and

f(x) = 0 if x is irrational. Show that f is integrable. What is
∫ 1

0
f(x)dx?

4. Give an example of a continuous function f : [0,∞)→ [0,∞) such that
∫∞
0
f(x)dx

exists, but f is unbounded.

5. Suppose that f : R→ R is C1, f(0) = 0, and |f ′(x)| ≤ M for x ∈ [0, 1]. Show that

|
∫ 1

0
f(x)dx| ≤ M/2. If in addition f(1) = 0, show that |

∫ 1

0
f(x)dx| ≤ M/4. What

can you say if f(0) = 0 and |f ′(x)| ≤ kx for some k ∈ R?

6. Let f : [0, 1] → R be continuous. Let G(x, t) = t(x − 1) for t ≤ x and G(x, t) =

x(t− 1) for t ≥ x. Let g(x) =
∫ 1

0
f(t)G(x, t)dt. Show that g′′(x) exists for x ∈ (0, 1)

and is equal to f(x).

7. Determine whether the following improper integrals converge:

(a)
∫∞
1

sin2(1/x)dx

(b)
∫∞
0
xp exp(−xq)dx for p, q > 0

(c)
∫∞
0

sin(x2)dx

8. Show that 1
n+1

+ 1
n+2

+ . . .+ 1
2n
→ log 2 as n→∞. What is

limn→∞
1

n+1
− 1

n+2
+ . . .+ (−1)n−1

2n
?

9. Let f(x) = log(1 − x2). Use the mean value theorem to show that |f(x)| ≤ 8x2/3
for x ∈ [0, 1/2]. Now let

In =

∫ n+ 1
2

n− 1
2

log x dx− log n

for n ∈ N. Show that In =
∫ 1/2

0
f(t/n)dt and hence that |In| ≤ 1/(9n2). By

considering
∑n

j=1 Ij, show that the sequence (n!enn−n−1/2) converges. (The bounds

1



8x2/3 and 1/(9n2) are not the best possible; they are merely good enough for the
conclusion.)

10. Let In =
∫ π/2
0

cosn x dx. Prove that nIn = (n− 1)In−2 and hence 2n
2n+1

≤ I2n+1

I2n
≤ 1.

Deduce Wallis’s product formula:

π

2
= lim

n→∞

2 · 2 · 4 · 4 · · · · 2n · 2n
1 · 3 · 3 · 5 · · · (2n− 1) · (2n+ 1)

= lim
n→∞

24n

2n+ 1

(
2n

n

)−2
.

Using the previous exercise, prove that n!enn−n−1/2 →
√

2π (Stirling’s formula).

11. Let In(θ) =
∫ 1

−1(1−x
2)n cos(θx)dx. Prove that θ2In = 2n(2n−1)In−1−4n(n−1)In−2

for n ≥ 2, and hence that θ2n+1In(θ) = n!(Pn(θ) sin θ + Qn(θ) cos θ), where Pn and
Qn are polynomials of degree ≤ 2n with integer coefficients. Deduce that π is
irrational.

12. A function g : [a, b] → R is said to have bounded variation if there is a constant K
such that whenever a0 < a1 · · · < an is a dissection of [a, b],

∑n
i=1 |g(ai)− g(ai+1)| ≤

K. Show that if g has bounded variation, g is integrable. Show also that if g =
f1− f2, where f1 and f2 are both increasing, then g has bounded variation. Give an
example of a continuous (hence integrable) functions which does not have bounded
variation.

13. Suppose that f : [a, b]→ R is integrable, that f ≥ 0, and that
∫ b
a
f(x)dx = 0. Show

that for every ε > 0 and every closed interval I ⊂ [a, b] of positive length, there is
a closed interval J ⊂ I such that J has positive length and f(x) ≤ ε for all x ∈ J .

Deduce that if f > 0,
∫ b
a
f(x)dx > 0.

14. Show that if f : [a, b] → R is integrable, then f is continuous at infinitely many
x ∈ [a, b].

J.Rasmussen@dpmms.cam.ac.uk

2


