Analysis I Lent term 2019

Example Sheet 4

- 1. Give an example of an integrable function $f:[0,1]\to\mathbb{R}$ with $f\geq 0$, $\int_0^1 f(x)dx=0$, and f(x)>0 for some $x\in[0,1]$. Show that this cannot happen if f is continuous.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be monotonic. Show that $\{x \in \mathbb{R} \mid f \text{ is discontinuous at } x\}$ is countable. Let $x_n, n \geq 1$ be a sequence of distinct points in [0,1) and define $f_n(x) = 0$ if $0 \leq x \leq x_n$, $f_n(x) = 1$ otherwise. Define $f(x) = \sum_{n=1}^{\infty} 2^{-n} f_n(x)$. Show that this series converges for all $x \in [0,1]$, and that f is integrable. Show that f is discontinuous at every x_n .
- 3. Define $f:[0,1]\to\mathbb{R}$ by f(p/q)=1/q, where $p,q\in\mathbb{N}$ are relatively prime, and f(x)=0 if x is irrational. Show that f is integrable. What is $\int_0^1 f(x)dx$?
- 4. Give an example of a continuous function $f:[0,\infty)\to [0,\infty)$ such that $\int_0^\infty f(x)dx$ exists, but f is unbounded.
- 5. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is C^1 , f(0) = 0, and $|f'(x)| \leq M$ for $x \in [0, 1]$. Show that $|\int_0^1 f(x)dx| \leq M/2$. If in addition f(1) = 0, show that $|\int_0^1 f(x)dx| \leq M/4$. What can you say if f(0) = 0 and $|f'(x)| \leq kx$ for some $k \in \mathbb{R}$?
- 6. Let $f:[0,1] \to \mathbb{R}$ be continuous. Let G(x,t)=t(x-1) for $t \leq x$ and G(x,t)=x(t-1) for $t \geq x$. Let $g(x)=\int_0^1 f(t)G(x,t)dt$. Show that g''(x) exists for $x \in (0,1)$ and is equal to f(x).
- 7. Determine whether the following improper integrals converge:
 - (a) $\int_{1}^{\infty} \sin^2(1/x) dx$
 - (b) $\int_0^\infty x^p \exp(-x^q) dx$ for p, q > 0
 - (c) $\int_0^\infty \sin(x^2) dx$
- 8. Show that $\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \to \log 2$ as $n \to \infty$. What is $\lim_{n \to \infty} \frac{1}{n+1} \frac{1}{n+2} + \ldots + \frac{(-1)^{n-1}}{2n}$?
- 9. Let $f(x) = \log(1 x^2)$. Use the mean value theorem to show that $|f(x)| \le 8x^2/3$ for $x \in [0, 1/2]$. Now let

$$I_n = \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \log x \, dx - \log n$$

for $n \in \mathbb{N}$. Show that $I_n = \int_0^{1/2} f(t/n) dt$ and hence that $|I_n| \leq 1/(9n^2)$. By considering $\sum_{j=1}^n I_j$, show that the sequence $(n!e^n n^{-n-1/2})$ converges. (The bounds

 $8x^2/3$ and $1/(9n^2)$ are not the best possible; they are merely good enough for the conclusion.)

10. Let $I_n = \int_0^{\pi/2} \cos^n x \, dx$. Prove that $nI_n = (n-1)I_{n-2}$ and hence $\frac{2n}{2n+1} \le \frac{I_{2n+1}}{I_{2n}} \le 1$. Deduce Wallis's product formula:

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \dots \cdot 2n \cdot 2n}{1 \cdot 3 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) \cdot (2n+1)} = \lim_{n \to \infty} \frac{2^{4n}}{2n+1} {2n \choose n}^{-2}.$$

Using the previous exercise, prove that $n!e^n n^{-n-1/2} \to \sqrt{2\pi}$ (Stirling's formula).

- 11. Let $I_n(\theta) = \int_{-1}^1 (1-x^2)^n \cos(\theta x) dx$. Prove that $\theta^2 I_n = 2n(2n-1)I_{n-1} 4n(n-1)I_{n-2}$ for $n \geq 2$, and hence that $\theta^{2n+1}I_n(\theta) = n!(P_n(\theta)\sin\theta + Q_n(\theta)\cos\theta)$, where P_n and Q_n are polynomials of degree $\leq 2n$ with integer coefficients. Deduce that π is irrational.
- 12. A function $g:[a,b] \to \mathbb{R}$ is said to have bounded variation if there is a constant K such that whenever $a_0 < a_1 \cdots < a_n$ is a dissection of [a,b], $\sum_{i=1}^n |g(a_i) g(a_{i+1})| \le K$. Show that if g has bounded variation, g is integrable. Show also that if $g = f_1 f_2$, where f_1 and f_2 are both increasing, then g has bounded variation. Give an example of a continuous (hence integrable) functions which does not have bounded variation.
- 13. Suppose that $f:[a,b]\to\mathbb{R}$ is integrable, that $f\geq 0$, and that $\int_a^b f(x)dx=0$. Show that for every $\epsilon>0$ and every closed interval $I\subset [a,b]$ of positive length, there is a closed interval $J\subset I$ such that J has positive length and $f(x)\leq \epsilon$ for all $x\in J$. Deduce that if f>0, $\int_a^b f(x)dx>0$.
- 14. Show that if $f:[a,b]\to\mathbb{R}$ is integrable, then f is continuous at infinitely many $x\in[a,b]$.

J.Rasmussen@dpmms.cam.ac.uk