1. Let $f: [a, b] \to \mathbb{R}$ be an integrable function with $f(x) \ge 0$ for every x. Assume further that f is continuous. Show that $\int_a^b f(t) dt = 0$ iff f(x) = 0 for every x. Does this hold without the assumption of continuity?

2. Give an example of a function $f: [0,1] \to \mathbb{R}$ such that |f| is integrable but f is not. Give an example of a sequence $f_n: [0,1] \to [0,1]$ of integrable functions such that the function $f(x) = \sup_n f_n(x)$ is not integrable.

3. Let $f: [0,1] \to \mathbb{R}$ be defined by f(x) = 0 when x is irrational, and f(x) = 1/q when x = p/q is a rational written in its lowest terms. Prove that f is integrable on [0,1]. What is $\int_0^1 f(x) dx$?

4. Let a < b and f be an integrable function on [a, b]. Show that for every closed subinterval $I \subset [a, b]$ of positive length and every $\varepsilon > 0$ there exists a closed subinterval $J \subset I$ of positive length such that $\sup_J f - \inf_J f < \varepsilon$. Use this to show that if f(x) > 0 for every x then $\int_a^b f(x) \, dx > 0$.

5. Let f be a continuous function on [a, b] and let a < c < d < b. Prove that

$$\lim_{h \to 0} \int_{c}^{d} \frac{f(x+h) - f(x)}{h} \, \mathrm{d}x = f(d) - f(c) \; .$$

6. Let $f: [0,1] \to \mathbb{R}$ be continuous. Let G(x,t) = t(x-1) when $t \leq x$ and x(t-1) when $t \geq x$. Let $g(x) = \int_0^1 G(x,t)f(t) dt$. Show that g''(x) exists for $x \in (0,1)$ and equals f(x).

7. Which of the following improper integrals converge?

(i)
$$\int_{1}^{\infty} \frac{\log x}{1+x^{2}} dx$$
.
(ii)
$$\int_{0}^{\infty} x^{p} \exp(-x^{q}) dx \quad (\text{where } p, q > 0).$$

(iii)
$$\int_{0}^{\infty} \sin(x^{2}) dx$$
.

8. Give an example of a continuous function $f: [0, \infty) \to [0, \infty)$ such that $\int_0^\infty f(x) dx$ exists but f is unbounded.

9. Prove that $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \to \log 2 \text{ as } n \to \infty$, and find the limit of $\frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{(-1)^{n-1}}{2n}$.

10. For each non-negative integer n let $I_n(\theta) = \int_{-1}^1 (1-x^2)^n \cos(\theta x) dx$. Prove that $\theta^2 I_n = 2n(2n-1)I_{n-1} - 4n(n-1)I_{n-2}$ for all $n \ge 2$, and hence that $\theta^{2n+1}I_n(\theta) = n!(P_n(\theta)\sin\theta + Q_n(\theta)\cos\theta)$ for some pair P_n, Q_n of polynomials of degree at most 2n with integer coefficients. Deduce that π is irrational.

11. For each $n \in \mathbb{N}$ let $u_n = \int_0^{\pi/2} \sin 2nx \cot x \, dx$ and $v_n = \int_0^{\pi/2} \frac{\sin 2nx}{x} \, dx$. Prove that $u_n = \pi/2$. By considering the limit of v_n and of $u_n - v_n$ as $n \to \infty$, show that $\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}$.

12. A function $f: [a, b] \to \mathbb{R}$ is said to have bounded variation if there exists $K \ge 0$ such that for every dissection $\mathcal{D}: a = x_0 < x_1 < \cdots < x_n = b$ of [a, b], we have $\sum_{k=1}^n |f(x_k) - f(x_{k-1})| \le K$. Prove that a function of bounded variation is integrable. Is the converse true?

13. For a dissection $\mathcal{D}: a = x_0 < x_1 < \cdots < x_n = b$ of a closed bounded interval [a, b] define $|\mathcal{D}| = \max_k(x_k - x_{k-1})$. Assume that $f: [a, b] \to \mathbb{R}$ is integrable and (\mathcal{D}_n) is a sequence of dissections of [a, b] with $|\mathcal{D}_n| \to 0$ as $n \to \infty$. Prove that $S_{\mathcal{D}_n}(f) - s_{\mathcal{D}_n}(f) \to 0$ as $n \to \infty$. Deduce that if \mathcal{D}_n is the sequence $a = x_0^{(n)} < x_1^{(n)} < \cdots < x_{m_n}^{(n)} = b$ and $\xi_k^{(n)} \in [x_{k-1}^{(n)}, x_k^{(n)}]$ for each $1 \leq k \leq m_n$, then

$$\sum_{k=1}^{m_n} f(\xi_k^{(n)})(x_k^{(n)} - x_{k-1}^{(n)}) \to \int_a^b f(t) \, \mathrm{d}t \qquad \text{as } n \to \infty$$

14⁺. Let $f: [0,1] \to \mathbb{R}$ be a function that is differentiable everywhere (with right and left derivatives at the end points) with a derivative f' that is bounded. Must f' be integrable?