- 1. Using the fact that log is differentiable at 1, prove that $\left(1 + \frac{a}{n}\right)^n \to \exp(a)$ as $n \to \infty$ for every $a \in \mathbb{R}$. Deduce that $\exp(z) = e^z$ for every $z \in \mathbb{C}$.
- 2. (i) Let $g: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that g(0) = g'(0) = 0 and g''(0) exists and is positive. Prove that there exists x > 0 such that g(x) > 0.
- (ii) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0 and f''(0) exists and is positive. Prove that there exists x > 0 such that f(2x) > 2f(x).
- 3. Prove Cauchy's mean value theorem: let $f,g:[a,b]\to\mathbb{R}$ be continuous functions which are differentiable on the open interval (a,b); show that for some $c\in(a,b)$ the vectors (f(b)-f(a),g(b)-g(a)) and (f'(c),g'(c)) in \mathbb{R}^2 are parallel. Does this generalize to three or more functions?
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable everywhere. Prove that if $f'(x) \to \ell$ as $x \to \infty$ then $f(x)/x \to \ell$ as $x \to \infty$. If $f(x)/x \to \ell$ as $x \to \infty$, does it follow that $f'(x) \to \ell$?
- 5. Define $f: \mathbb{R} \to \mathbb{R}$ by letting $f(x) = e^{-1/x^2}$ for $x \neq 0$ and f(0) = 0. Show that f is infinitely differentiable and find its Taylor series at 0.
- 6. Show that $\tan x = \frac{\sin x}{\cos x}$ defines a bijection from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ onto \mathbb{R} . Prove that the inverse function arctan is differentiable and find its derivative. Why is it reasonable to guess that $\arctan x = x x^3/3 + x^5/5 \ldots$ when |x| < 1? Verify this guess by considering derivatives.
- 7. Find the radius of convergence of each of the following power series.

$$\sum_{n=0}^{\infty} \frac{2 \cdot 4 \cdot 6 \dots (2n+2)}{1 \cdot 4 \cdot 7 \dots (3n+1)} z^n \qquad \sum_{n=1}^{\infty} \frac{z^{3n}}{n2^n} \qquad \sum_{n=0}^{\infty} \frac{n^n z^n}{n!} \qquad \sum_{n=1}^{\infty} n^{\sqrt{n}} z^n$$

- 8. We say that a function $f: \mathbb{R} \to \mathbb{R}$ has a local maximum at a if for some r > 0, we have $f(x) \leq f(a)$ for all $x \in (a-r,a+r)$. A local minimum is defined similarly. Assuming that f is differentiable at a, prove that if f has a local maximum or minimum at a then f'(a) = 0, but that the converse fails in general. However, show that if f is twice differentiable at a, f'(a) = 0 and f''(a) < 0 (or f''(a) > 0), then f has a local maximum (respectively, minimum) at a.
- 9. Assume that f is twice differentiable at x. Prove that

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} .$$

10. Let f be continuous on [-1,1] and twice differentiable on (-1,1). Let $\varphi(x) = (f(x) - f(0))/x$ for $x \neq 0$ and $\varphi(0) = f'(0)$. Show that φ is continuous on [-1,1] and differentiable on (-1,1). By using a second-order mean value theorem for f, show that $\varphi'(x) = f''(\theta x)/2$ for some $\theta \in (0,1)$. Hence prove that there exists $c \in (-1,1)$ such that f''(c) = f(-1) + f(1) - 2f(0).

11. Let $f: I \to \mathbb{R}$ be a differentiable function on the open interval I. Show that if f'(a) < y < f'(b) for some a < b in I and $y \in \mathbb{R}$, then there exists $x \in I$ with a < x < b and f'(x) = y. [Note that f' is not assumed to be continuous.] Deduce that if $f'(x) \neq 0$ for all $x \in I$, then f is strictly monotonic.

12. (i) Let $z \in \mathbb{C} \setminus \{0\}$. We say that $\varphi \in \mathbb{R}$ is a *choice of argument of z* if $e^{i\varphi} = z/|z|$, and we denote by arg z the set of all such $\varphi \in \mathbb{R}$. Show that arg z contains a unique element $\theta \in [0, 2\pi)$, and then $\arg(z) = \{\theta + 2\pi n : n \in \mathbb{Z}\}$.

(ii) Show that there is no continuous choice of argument on $\mathbb{C}\setminus\{0\}$, *i.e.*, there is no continuous function $\theta\colon\mathbb{C}\setminus\{0\}\to\mathbb{R}$ such that $\theta(z)\in\arg z$ for all $z\in\mathbb{C}\setminus\{0\}$. [Hint: assume such θ exists, and consider the function $f(x)=\frac{1}{\pi}(\theta(e^{ix})-\theta(e^{ix+i\pi}))$.]

13. (i) Let $z \in \mathbb{C} \setminus \{0\}$. Show that there exists $\lambda \in \mathbb{C}$ such that $e^{\lambda} = z$. Such a λ is called a *choice of logarithm of z*.

(ii) Show that the power series $\sum_{n=1}^{\infty} \frac{-1}{n} (1-z)^n$ has radius of convergence 1. Let $D = \{z \in \mathbb{C} : |z-1| < 1\}$, and define $L : D \to \mathbb{C}$ by $L(z) = \sum_{n=1}^{\infty} \frac{-1}{n} (1-z)^n$. Show that L is complex differentiable and find its derivative. By considering the function $f(z) = z e^{-L(z)}$, show that L(z) is a choice of logarithm of z for every $z \in D$.

14. (i) The extended real line is the set $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$. The linear order of \mathbb{R} is extended to \mathbb{R}^* by declaring $-\infty < x < \infty$ for all $x \in \mathbb{R}$. Prove that in \mathbb{R}^* every non-empty set has a supremum and an infimum, and that every monotonic sequence converges.

Let (x_n) be a sequence in \mathbb{R}^* . We define

 $\liminf x_n = \lim_{n \to \infty} \inf \{ x_m : m \ge n \} \quad \text{and} \quad \limsup x_n = \lim_{n \to \infty} \sup \{ x_m : m \ge n \} .$

Show that $\liminf x_n \leq \limsup x_n$ with equality if and only if (x_n) converges in \mathbb{R}^* , and then $\lim x_n$ is their common value.

(ii) Show that the power series $\sum a_n z^n$ has radius of convergence R given by

$$R = \frac{1}{\limsup |a_n|^{\frac{1}{n}}}$$

where we define $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$.