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1. Suppose that f : R → R satisfies the inequality |f(x) − f(y)| 6 |x − y|2 for

every x, y ∈ R. Show that f is constant.

2. (i) Let f : R→ R be defined by f(x) = x2 sin
(
1
x

)
if x 6= 0 and f(0) = 0. Prove

that f is differentiable everywhere. For which x is f ′ continuous at x?

(ii) Give an example of a function g : R → R that is differentiable everywhere

such that g′ is not bounded on the interval (−δ, δ) for any δ > 0.

3. Construct a function f : R→ R which is differentiable at 0 and discontinuous

at every x 6= 0.

4. Using the fact that log is differentiable at 1, prove that
(
1 + a

n

)n → exp(a) as

n→∞ for every a ∈ R. Deduce that exp(z) = ez for every z ∈ C.

5. Let f, g : R → R be differentiable functions with lim
x→∞

f(x) = lim
x→∞

g(x) = 0.

Assume that for some c > 0, we have g′(x) 6= 0 for all x > c and that f ′(x)
g′(x)
→ `

as x→∞. Deduce that g(x) 6= 0 for all x > c and that f(x)
g(x)
→ ` as x→∞.

6. Define f : R→ R by letting f(x) = e−1/x
2

for x 6= 0 and f(0) = 0. Show that

f is infinitely differentiable and find its Taylor series at 0.

7. Show that tanx = sinx
cosx

defines a bijection from (−π
2
, π
2
) onto R. Prove that

the inverse function arctan is differentiable and find its derivative. Why is it

reasonable to guess that arctan x = x − x3/3 + x5/5 − . . . when |x| < 1? Verify

this guess by considering derivatives.

8. Find the radius of convergence of each of the following power series.
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9. We say that a function f : R→ R has a local maximum at a if for some r > 0,

we have f(x) 6 f(a) for all x ∈ (a−r, a+r). A local minimum is defined similarly.

Assuming that f is differentiable at a, prove that if f has a local maximum or

minimum at a then f ′(a) = 0, but that the converse does not hold in general.

However, show that if f is twice differentiable at a, f ′(a) = 0 and f ′′(a) < 0 (or

f ′′(a) > 0), then f has a local maximum (respectively, minimum) at a.



10. Let f : R → R be a function such that f(x)

x3/4
→ ` as x → ∞. Show that√

x+ f(x)−
√
x− 1

2
f(x)√
x
→ − `2

8
as x→∞.

11. Let f : I → R be a differentiable function on the open interval I. Show that

if f ′(a) < y < f ′(b) for some a < b in I and y ∈ R, then there exists x ∈ I with

a < x < b and f ′(x) = y. [Note that f ′ is not assumed to be continuous.] Deduce

that if f ′(x) 6= 0 for all x ∈ I, then f is strictly monotonic.

12. The infinite product
∏∞

n=1(1 + xn) is said to converge to x if the sequence of

partial products Pn = (1 + x1) . . . (1 + xn) converges to x. Suppose that xn > 0

for every n. Write Sn = x1 + · · ·+xn. Prove that Sn 6 Pn 6 eSn for every n, and

deduce that
∏∞

n=1(1 + xn) converges if and only if
∑∞

n=1 xn converges. Evaluate

the product
∏∞

n=2(1 + 1/(n2 − 1)).

13. (i) Let z ∈ C \ {0}. We say that ϕ ∈ R is a choice of argument of z if

eiϕ = z/|z|, and we denote by arg z the set of all such ϕ ∈ R. Show that arg z

contains a unique element θ ∈ [0, 2π), and then arg(z) = {θ + 2πn : n ∈ Z}.
(ii) Show that there is no continuous choice of argument on C \ {0}, i.e., there is

no continuous function θ : C \ {0} → R such that θ(z) ∈ arg z for all z ∈ C \ {0}.
[Hint: assume such θ exists, and consider the function f(x) = 1

π

(
θ(eix)−θ(eix+iπ)

)
for 0 6 x 6 π.]

14. (i) Let z ∈ C \ {0}. Show that there exists λ ∈ C such that eλ = z. Such a λ

is called a choice of logarithm of z.

(ii) Show that the power series
∑∞

n=1
−1
n

(1− z)n has radius of convergence 1. Let

D = {z ∈ C : |z − 1| < 1}, and define L : D → C by L(z) =
∑∞

n=1
−1
n

(1 − z)n.

Show that L is complex differentiable and find its derivative. By considering the

function f(z) = ze−L(z), show that L(z) is a choice of logarithm of z for every

z ∈ D.

15. (i) Given a sequence (xn) in R, for each m ∈ N let am = inf{xn : n > m}
and bm = sup{xn : n > m}. Then (am) is an increasing sequence in R ∪ {−∞},
and hence tends to some element of R∪{−∞,∞}, which we denote by lim inf xn.

Similarly, (bm) is a decreasing sequence in R ∪ {∞}, and hence tends to some

element of R ∪ {−∞,∞}, which we denote by lim supxn.

Show that lim inf xn 6 lim supxn with equality if and only if (xn) converges

in R ∪ {−∞,∞}, and then limxn is their common value.

(ii) Show that the power series
∑
anz

n has radius of convergence R = 1

lim sup|an|
1
n

.


