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1. Let
∑

n>0 xn and
∑

n>0 yn be absolutely convergent series. For each n > 0

let zn =
∑n

k=0 xkyn−k. Prove that
∑

n>0 zn converges absolutely and that∑∞
n=0 zn =

∑∞
n=0 xn ·

∑∞
n=0 yn.

2. Let (xn) be a decreasing real sequence converging to zero, and let
∑
zn

be a real or complex series whose sequence of partial sums is bounded. Show

that
∑
xnzn converges.

3. For each n ∈ N let fn : [0, 1] → [0, 1] be a continuous function, and for

each n ∈ N let hn be defined by hn(x) = max{f1(x), f2(x), . . . , fn(x)}. Show

that for each n the function hn is continuous on [0, 1]. Must the function h

defined by h(x) = sup{fn(x) : n ∈ N} be continuous on [0, 1]?

4. Let f be a function on a set A and let a ∈ A. Assume that for every

sequence (xn) in A that converges to a, the sequence
(
f(xn)

)
is convergent.

Does it follow that f is continuous at a?

5. Let f be a function on a set A and let B ⊂ A. Assume that g is a

continuous function on A that agrees with f on B. For which x ∈ B can we

deduce that f is continuous at x?

6. Let g : [0, 1] → [0, 1] be a continuous function. Prove that there exists

some c ∈ [0, 1] such that g(c) = c. Such a c is called a fixed point of g.

Give an example of a bijection h : [0, 1]→ [0, 1] with no fixed point. Give an

example of a continuous bijection p : (0, 1)→ (0, 1) with no fixed point.

7. Prove that the real polynomial p(x) = 2x5 + 3x4 + 2x+ 16 takes the value

0 exactly once, and that the number where it takes that value is somewhere

in the interval [−2,−1].

8. A function f defined on a set A is locally bounded if every point in A has

a neighbourhood on which f is bounded: for all a ∈ A there exists δ > 0 and

C ∈ R such that if x ∈ A and |x− a| < δ then |f(x)| 6 C. Show that every

continuous function is locally bounded. Is the converse true? Show that a

locally bounded function on a closed bounded interval is bounded.



9. Let f : [0, 1] → R be continuous with f(0) = f(1) = 0. Suppose that for

every x ∈ (0, 1) there exists δ > 0 such that both x − δ and x + δ belong

to (0, 1) and f(x) = 1
2

(
f(x − δ) + f(x + δ)

)
. Prove that f(x) = 0 for all

x ∈ [0, 1].

10. Define a function f : R → R by setting f(x) = 0 if x is irrational, and

f(x) = 1/q when x = p/q for coprime integers p and q with q > 0. Prove

that f is continuous at every irrational and discontinuous at every rational.
+ Does there exist a function g : R→ R which is continuous at every rational

and discontinuous at every irrational?

11. Let I be an interval and f : I → R be a continuous, injective function.

Show that f−1 : f(I)→ I is continuous.

12. (i) Let g : R→ R be a differentiable function such that g(0) = g′(0) = 0

and g′′(0) exists and is positive. Prove that there exists x > 0 such that

g(x) > 0.

(ii) Let f : R→ R be a differentiable function such that f(0) = 0 and f ′′(0)

exists and is positive. Prove that there exists x > 0 such that f(2x) > 2f(x).

13. Let f : R → R be differentiable everywhere. Prove that if f ′(x) → ` as

x→∞ then f(x)/x→ ` as x→∞. If f(x)/x→ ` as x→∞, does it follow

that f ′(x)→ `?

14. Prove Cauchy’s mean value theorem: let f, g : [a, b] → R be continuous

functions which are differentiable on the open interval (a, b); show that for

some c ∈ (a, b) the vectors
(
f(b), g(b)

)
−
(
f(a), g(a)

)
and

(
f ′(c), g′(c)

)
in R2

are parallel. Does this generalize to three or more functions?

15. A function f : I → R on an interval I is convex if

f
(
(1− t)x+ ty

)
6 (1− t)f(x) + tf(y) ∀x, y ∈ I ∀ t ∈ [0, 1] .

Assume now that I is an open interval. Show the following.

(i) If f is convex then it is continuous.

(ii) If f is convex then for each c ∈ I there exists m ∈ R such that

m(x− c) + f(c) 6 f(x) for all x ∈ I ,

and if in addition f is differentiable at c then f ′(c) is the unique m that

works. In general, must m be unique?

(iii) If f is twice differentiable and f ′′ > 0 on I, then f is convex.


