
ANALYSIS 1 EXAMPLES SHEET 3

Lent Term 2015 W. T. G.

1. Suppose that f : R → R satisfies the inequality |f(x) − f(y)| ≤ |x − y|2 for every

x, y ∈ R. Prove that f is constant.

2. (i) Let f : R → R be defined by f(x) = x2 sin(1/x) if x 6= 0 and f(0) = 0. Prove that

f is differentiable everywhere. For which x is f ′ continuous at x?

(ii) Give an example of a function g : R→ R that is differentiable everywhere such that

g′ is not bounded on the interval [−1, 1].

3. Let f : R → R be a differentiable function with the property that f(x) = o(xn) for

every positive integer n. (In other words, for every n we have f(x)/xn → 0 as x → 0.)

Does it follow that f is infinitely differentiable at 0?

4. By applying the mean value theorem to log(1 + x) on the interval [0, a/n], prove

rigorously that (1 + a/n)n → ea as n→∞.

5. Find lim
n→∞

n(a1/n − 1), when a > 0.

6. Let f : R → R be defined by f(x) = exp(−1/x2) when x 6= 0 and f(0) = 0. Prove

that f is infinitely differentiable and that f (n)(0) = 0 for every n ∈ N. What does Taylor’s

theorem tell us when we apply it to f at 0?

7. Find the radius of convergence of each of the following power series.
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8. Find the derivative of tan x on the interval (−π/2, π/2). How do you know that there

is a differentiable inverse function arctanx from R to (−π/2, π/2)? What is its derivative?

By considering derivatives, prove that arctanx = x− x3/3 + x5/5− . . . when |x| < 1.

9. Let f and g be two functions defined and differentiable on an open interval I con-

taining 0. Suppose that f(0) = g(0) = 0 and that f ′(x)/g′(x) converges to a limit ` as

x→ 0.

(i) Show that there is an open interval of the form (0, a) on which g′ does not vanish.

Let 0 < x < a. By considering the function F (u) = f(x)g(u)− g(x)f(u), prove that there

exists y with 0 < y < x such that f ′(y)
g′(y)

= f(x)
g(x)

. Explain briefly why a similar statement

holds for negative x.
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(ii) Deduce l’Hôpital’s rule, which states that under the conditions above, f(x)/g(x)→ `.

(iii) What is lim
x→0

(1− cos(sinx))/x2?

10. Let (an) be a bounded real sequence. Prove that (an) has a subsequence that tends to

lim sup an. What result from the course does this imply?

11. The infinite product
∏∞

n=1(1 + an) is said to converge to a if the sequence of partial

products Pn = (1 + a1) . . . (1 + an) converges to a. Suppose that an ≥ 0 for every n. Write

Sn = a1 + · · ·+ an. Prove that Sn ≤ Pn ≤ eSn for every n, and deduce that
∏∞

n=1(1 + an)

converges if and only if
∑∞

n=1 an converges. Evaluate the product
∏∞

n=2(1 + 1/(n2 − 1)).

12. Let f : R→ R be differentiable, let a and b be real numbers with a < b, and suppose

that f ′(a) < 0 < f ′(b). Prove that there exists c ∈ (a, b) such that f ′(c) = 0. Deduce

the more general result that if f ′(a) 6= f ′(b) and z lies between f ′(a) and f ′(b), then there

exists c ∈ (a, b) such that f ′(c) = z. (This result is called Darboux’s theorem.)

13. Say that an ordered field F has the intermediate value property if for every a < b and

every continuous function f : F → F, if f(a) < 0 and f(b) > 0 then there exists c ∈ (a, b)

such that f(c) = 0. Prove that every ordered field with the intermediate value property

has the least upper bound property. (This implies that it is isomorphic to R.)

14. (i) Show that the series
∑∞

n=1
zn

n
has radius of convergence 1, and that it converges

for every z such that |z| = 1, with the exception of z = 1.

(ii) Let z1, . . . , zm be complex numbers of modulus 1. Find a power series
∑∞

n=0 anz
n

with radius of convergence 1 that converges for every z such that |z| = 1, except when

z ∈ {z1, . . . , zm}, when it diverges.

15. (i) Let f and g be two n-times-differentiable functions from R to R. For k ≤ n and

x ∈ R, say that f and g agree to order k at x if f (j)(x) = g(j)(x) for j = 0, 1, . . . , k − 1.

Let x1 < x2 < · · · < xr be real numbers, let k1, . . . , kr be non-negative integers such

that k1 + · · · + kr = n, and suppose that for each i ≤ r the functions f and g agree to

order ki at xi. If r ≥ 2, prove that there exists x in the open interval (x1, xr) such that

f (n−1)(x) = g(n−1)(x). [Note that if you can do this when g is the zero function then

you can do it in general. If you still find it too hard, then try it in the case r = n, so

k1 = · · · = kn = 1, and in the case k = 2, to get an idea what is going on.]

(ii) Let f be n-times differentiable, let x1 < · · · < xr be real numbers and let k1, . . . , kr

be non-negative integers with k1 + · · · + kr = n. Prove that there is a polynomial p of

degree at most n− 1 such that for every i ≤ r and every j < ki we have p(j)(xi) = f (j)(xi).

[Hint: start by building a suitable basis of polynomials and then take linear combinations.]

(iii) Find an expression for the constant value of p(n−1).


