ANALYSIS 1 EXAMPLES SHEET 4

W. T. G.

Lent Term 2014

1. Show directly from the definition of an integral that $\int_0^a x^2 dx = a^3/3$ for a > 0.

2. Give an example of a continuous function $f: [0,\infty) \to [0,\infty)$ such that $\int_0^\infty f(x)dx$ exists but f is unbounded.

3. Give an example of an integrable function $f: [0,1] \to \mathbb{R}$ such that $f(x) \ge 0$ for every x, f(y) > 0 for some y, and $\int_0^1 f(x) dx = 0$.

Prove that this cannot happen if in addition f is continuous.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be monotonic. Show that the set of x such that f is discontinuous at x is countable.

Let (x_n) be a sequence of distinct points in (0,1]. Let $f_n(x) = 0$ if $0 \le x < x_n$ and let $f_n(x) = 1$ if $x_n \le x \le 1$. For each x, let $f(x) = \sum_{n=1}^{\infty} 2^{-n} f_n(x)$. Prove that this series converges for every $x \in [0,1]$.

Explain why f must be integrable.

Prove that f is discontinuous at every x_n .

5. Define a function $f : [0,1] \to \mathbb{R}$ as follows. If x is irrational, then f(x) = 0. If x is rational, then write it in its lowest terms as p/q and then f(x) = 1/q. Prove that f is integrable. What is $\int_0^1 f(x) dx$?

6. Let a < b and let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function such that $f(x) \ge 0$ for every x. Prove that if $\int_a^b f(x)dx = 0$, then for every closed subinterval $I \subset [a, b]$ of positive length and every $\epsilon > 0$ there exists a closed subinterval $J \subset I$ of positive length such that $f(x) \le \epsilon$ for every $x \in J$.

Deduce that if f(x) > 0 for every x, then $\int_a^b f(x) dx > 0$.

7. Do these improper integrals converge?

(i)
$$\int_1^\infty \sin^2(1/x) dx$$
.
(ii) $\int_0^\infty x^p \exp(-x^q) dx$ (with $p, q > 0$).
(iii) $\int_0^\infty \sin(x^2) dx$.

8. Prove that
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \to \log 2$$
 as $n \to \infty$, and find the limit of $\frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{(-1)^{n-1}}{2n}$.

9. Let $f:[a,b] \to \mathbb{R}$ be continuous and suppose that $\int_a^b f(x)g(x)dx = 0$ for every continuous function $g:[a,b] \to \mathbb{R}$ with g(a) = g(b) = 0. Must f vanish identically?

10. Let $f: [0,1] \to \mathbb{R}$ be continuous. Let G(x,t) = t(x-1) when $t \le x$ and x(t-1) when $t \ge x$. Let $g(x) = \int_0^1 f(t)G(x,t)dt$. Show that g''(x) exists for $x \in (0,1)$ and equals f(x).

11. For positive x, define L(x) to be $\int_1^x \frac{dt}{t}$. Prove directly from this definition that the function L has the properties one normally expects of the logarithm function. In particular, prove that L(ab) = L(a) + L(b) for all positive a and b. If you adopted this as your fundamental definition of natural logarithms, then how would you define e?

12. For each non-negative integer n let $I_n(\theta) = \int_{-1}^{1} (1-x^2)^n \cos(\theta x) dx$. Prove that $\theta^2 I_n = 2n(2n-1)I_{n-1} - 4n(n-1)I_{n-2}$ for all $n \ge 2$, and hence that $\theta^{2n+1}I_n(\theta) = n!(P_n(\theta)\sin\theta + Q_n(\theta)\cos\theta)$ for some pair P_n and Q_n of polynomials of degree at most 2n with integer coefficients.

Deduce that π is irrational.

13. Let f: [-1,1] be defined by $f(x) = x \sin(1/x)$ when $x \neq 0$ and f(0) = 0. Explain why f is integrable. Prove that there do not exist increasing functions g and h, defined on [-1,1], such that f(x) = g(x) - h(x) for every x.

14. Prove that if $f:[0,1] \to \mathbb{R}$ is integrable, then f has infinitely many points of continuity.

15^{*}. Let $f : [0,1] \to \mathbb{R}$ be a function that is differentiable everywhere (with right and left derivatives at the end points) with a derivative f' that is bounded. Must f' be integrable?

Comments and corrections to wtg10@dpmms.cam.ac.uk