ANALYSIS 1 EXAMPLES SHEET 2

Lent Term 2014

W. T. G.

1. Let (a_n) and (b_n) be two real sequences. Suppose that (a_n) is a subsequence of (b_n) and (b_n) is a subsequence of (a_n) . Suppose also that (a_n) converges. Does it follow that they are the same sequence?

2. Let $H : \mathbb{R} \to \mathbb{R}$ be defined as follows: if x < 0 then H(x) = 0 and if $x \ge 0$ then H(x) = 1. Prove carefully that H is not continuous (i) by directly using the definition of continuity and (ii) by using the sequence definition.

3. Suppose that $f(x) \to \ell$ as $x \to a$ and $g(y) \to k$ as $y \to \ell$. Does it follow that $g(f(x)) \to k$ as $x \to a$?

4. For each natural number n, let $f_n : [0,1] \to [0,1]$ be a continuous function, and for each n let h_n be defined by $h_n(x) = \max\{f_1(x), \ldots, f_n(x)\}$. Show that for each n the function h_n is continuous on [0,1]. Must the function h defined by $h(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ be continuous?

5. Let $g: [0,1] \to [0,1]$ be a continuous function. Prove that there exists some $c \in [0,1]$ such that g(c) = c. Such a c is called a *fixed point* of g.

Give an example of a bijection $h: [0,1] \to [0,1]$ with no fixed point.

Give an example of a continuous bijection $p: (0,1) \to (0,1)$ with no fixed point.

6. Prove that the function $q(x) = 2x^5 + 3x^4 + 2x + 16$ (defined on the reals) takes the value 0 exactly once, and that the number where it takes that value is somewhere in the interval [-2, -1].

7. Assuming standard properties of trigonometric functions, prove rigorously that there are exactly 143 solutions to the simultaneous equations $x = \sin(6\pi y)$ and $y = \sin(6\pi x)$. That is, prove that there are exactly 143 ordered pairs (x, y) such that the two equations are satisfied. (Hint: you should start by drawing a diagram to understand where the number 143 comes from, but this diagram does not constitute part of the proof.)

8. Let $f : [0,1] \to \mathbb{R}$ be continuous, with f(0) = f(1) = 0. Suppose that for every $x \in (0,1)$ there exists $\delta > 0$ such that both $x + \delta$ and $x - \delta$ belong to (0,1) and $f(x) = \frac{1}{2}(f(x-\delta) + f(x+\delta))$. Prove that f(x) = 0 for every $x \in [0,1]$.

9. Define a function $f : \mathbb{R} \to \mathbb{R}$ as follows. If x is irrational, then f(x) = 0, while if x is rational, then f(x) = 1/q, where q is the denominator of x. (That is, x = p/q, with p and q coprime integers and q > 0.) Prove that f is continuous at every irrational and discontinuous at every rational.

10. Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Which of the following statements are always true and which are sometimes false?

- (i) If f is increasing, then $f'(x) \ge 0$ for every $x \in (a, b)$.
- (ii) If $f'(x) \ge 0$ for every $x \in (a, b)$, then f is increasing.
- (iii) If f is strictly increasing, then f'(x) > 0 for every $x \in (a, b)$.
- (iv) If f'(x) > 0 for every $x \in (a, b)$, then f is strictly increasing.

11. (i) Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that g(0) = g'(0) = 0 and g''(0) exists and is positive. Prove that there exists x > 0 such that g(x) > 0.

(ii) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f(0) = 0, and f''(0) exists and is positive. Prove that there exists x > 0 such that f(2x) > 2f(x).

12. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable everywhere. Prove that if $f'(x) \to \ell$ as $x \to \infty$, then $f(x)/x \to \ell$. If $f(x)/x \to \ell$ as $x \to \infty$, does it follow that $f'(x) \to \ell$?

13. Find a function $f : \mathbb{R} \to \mathbb{R}$ that takes every value in every interval. That is, for every a < b and every t there should exist $x \in (a, b)$ such that f(x) = t.

14. Let $f : \mathbb{R} \to \mathbb{R}$ be a function that has the intermediate value property: that is, if f(a) < c < f(b) then there exists $x \in (a, b)$ such that f(x) = c. Suppose also that for every rational r the set $S_r = \{x : f(x) = r\}$ is closed. (This means that if (x_n) is any convergent sequence in S_r , then its limit also belongs to S_r .) Prove that f is continuous.