Analysis 1 (2008–09)

Example Sheet 4 of 4

- 1. Show directly from the definition of an integral that $\int_0^a x^2 = a^3/3$ for a > 0.
- **2.** Let $f(x) = \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Does $\int_0^1 f$ exist?
- **3.** Give an example of continuous function $f:[0,\infty)\to [0,\infty)$, such that $\int_0^\infty f$ exists but f is unbounded.
- 4. Give an example of an integrable function $f: [0,1] \to \mathbb{R}$ with $f \ge 0$, $\int_0^1 f = 0$, and f(x) > 0 for some value of x. Show that this cannot happen if f is continuous.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be monotonic. Show that $\{x \in \mathbb{R} : f \text{ is discontinuous at } x\}$ is countable. Let $x_n, n \ge 1$ be a sequence of distinct points in (0, 1]. Let $f_n(x) = 0$ if $0 \le x < x_n$ and $f_n(x) = 1$ if $x_n \le x \le 1$. Let $f(x) = \sum_{n=1}^{\infty} 2^{-n} f_n(x)$. Show that this series converges for every $x \in [0, 1]$. Show that f is increasing (and so is integrable). Show that f is discontinuous at every x_n .
- 6. Let f(x) = log(1 x²). Use the mean value theorem to show that |f(x)| ≤ 8x²/3 for 0 ≤ x ≤ 1/2. Now let I_n = ∫_{n-1/2}^{n+1/2} log x dx log n for n ∈ N. Show that I_n = ∫₀^{1/2} f(t/n) dt and hence that |I_n| < 1/9n². By considering ∑_{j=1}ⁿ I_j, deduce that n!/n^{n+1/2}e⁻ⁿ → ℓ for some constant ℓ. [The bounds 8x²/3 and 1/9n² are not best possible; they are merely good enough for the conclusion.]
- 7. Let $I_n = \int_0^{\pi/2} \cos^n x$. Prove that $nI_n = (n-1)I_{n-2}$, and hence $\frac{2n}{2n+1} \le I_{2n+1}/I_{2n} \le 1$. Deduce Wallis's Product:

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdots 2n \cdot 2n}{1 \cdot 3 \cdot 3 \cdot 5 \cdots (2n-1) \cdot (2n+1)} = \lim_{n \to \infty} \frac{2^{4n}}{2n+1} {\binom{2n}{n}}^{-2}.$$

By taking note of the previous exercise, prove that $n!/n^{n+1/2}e^{-n} \rightarrow \sqrt{2\pi}$ (Stirling's formula).

- 8. Do these improper integrals converge? (i) $\int_1^\infty \sin^2(1/x) dx$, (ii) $\int_0^\infty x^p \exp(-x^q) dx$ where p, q > 0.
- 9. Show that $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \to \log 2$ as $n \to \infty$, and find $\lim_{n \to \infty} \frac{1}{n+1} \frac{1}{n+2} + \dots + \frac{(-1)^{n-1}}{2n}$.
- 10. Suppose that $f : \mathbb{R} \to \mathbb{R}$ has a continuous derivative, f(0) = 0 and $|f'(x)| \le M$ for $x \in [0, 1]$. Show that $|\int_0^1 f| \le M/2$. Show that if, in addition, f(1) = 0 then $|\int_0^1 f| \le M/4$. What could you say if $|f'(x)| \le Mx$?
- 11. Let $f: [0,1] \to \mathbb{R}$ be continuous. Let G(x,t) = t(x-1) for $t \le x$ and G(x,t) = x(t-1) for $t \ge x$. Let $g(x) = \int_0^1 f(t)G(x,t)dt$. Show that g''(x) exists for $x \in (0,1)$ and equals f(x).
- 12. Let $I_n(\theta) = \int_{-1}^{1} (1-x^2)^n \cos(\theta x) dx$. Prove that $\theta^2 I_n = 2n(2n-1)I_{n-1} 4n(n-1)I_{n-2}$ for $n \ge 2$, and hence that $\theta^{2n+1}I_n(\theta) = n!(P_n(\theta)\sin\theta + Q_n(\theta)\cos\theta)$, where P_n and Q_n are polynomials of degree at most 2n with integer coefficients. Deduce that π is irrational.
- 13. Let $f_1, f_2 : [-1, 1] \to \mathbb{R}$ be increasing and $g = f_1 f_2$. Show that there exists K such that, for any dissection $\mathcal{D} = x_0 < \ldots < x_n$ of $[-1, 1], \sum_{j=1}^n |g(x_j) g(x_{j-1})| \le K$. Now let $g(x) = x \sin(1/x)$ for $x \neq 0$ and g(0) = 0. Show that g is integrable but is not the difference of two increasing functions.
- 14. Give an example of functions $f : [0, 1] \to [0, 1]$ and $g : [0, 1] \to [0, 1]$ which are both integrable but such that $f \circ g$ is not integrable. (The notation means $(f \circ g)(x) = f(g(x))$.) Show that there is no example with f continuous. ⁺ Is there an example with g continuous?
- 15. Show that if $f : [0,1] \to \mathbb{R}$ is integrable then f has a point of continuity.