Analysis 1 (2008–09)

- **1.** Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) f(y)| \le |x y|^2$ for all $x, y \in \mathbb{R}$. Show that f is constant.
- 2. Given α ∈ ℝ, define f_α: [-1,1] → ℝ by f_α(x) = x^α sin(1/x) for x ≠ 0 and f_α(0) = 0. Is f₀ continuous? Is f₁ differentiable? Draw a table, with 4 columns labelled 0, 1, 2, 3 and with 6 rows labelled "f_α bounded", "f_α continuous", "f_α differentiable", "f_α bounded", "f_α continuous", "f_α differentiable", "f_α bounded", "f_α continuous", "f_α differentiable".

Does $|x|^{\alpha} \sin(1/x)$ behave the same way? Complete 5 extra columns, for $\alpha = -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2},$

- **3.** By applying the mean value theorem to $\log(1 + x)$ on [0, a/n] with n > |a|, prove carefully that $(1 + a/n)^n \to e^a$ as $n \to \infty$.
- 4. Find $\lim_{n\to\infty} n(a^{1/n} 1)$, where a > 0.
- 5. "Let f' exist on (a, b) and let $c \in (a, b)$. If $c + h \in (a, b)$ then $(f(c + h) f(c))/h = f'(c + \theta h)$. Let $h \to 0$; then $f'(c + \theta h) \to f'(c)$. Thus f' is continuous at c." Is this argument correct?
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \exp(-1/x^2)$ for $x \neq 0$ and f(0) = 0. Show that f is continuous and differentiable. Show that f is twice differentiable. Indeed, show that f is infinitely differentiable, and that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. Comment, in the light of what you know about Taylor series.
- 7. Let $f(x) = x^{1/2}$. Express f(1+h) as a quadratic in h plus a remainder term involving h^3 . By taking h = -0.02, find an approximate value for $\sqrt{2}$ and prove it is accurate to seven decimal places.
- 8. Find the radius of convergence of each of these power series.

$$\sum_{n \ge 0} \frac{2 \cdot 4 \cdot 6 \cdots (2n+2)}{1 \cdot 4 \cdot 7 \cdots (3n+1)} z^n \qquad \sum_{n \ge 1} \frac{z^{3n}}{n2^n} \qquad \sum_{n \ge 0} \frac{n^n z^n}{n!} \qquad \sum_{n \ge 1} n^{\sqrt{n}} z^n$$

9. Find the derivative of $\tan x$. How do you know there is a differentiable inverse function $\tan^{-1} x$ for $x \in \mathbb{R}$? What is its derivative? Now let $g(x) = x - x^3/3 + x^5/5 + \cdots$ for |x| < 1. By considering g'(x), explain carefully why $\tan^{-1} x = g(x)$ for |x| < 1.

If you so wish, verify Machin's formula $\frac{\pi}{4} = 4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239}$ and thereby estimate π .

- 10. The infinite product $\prod_{n=1}^{\infty} (1 + a_n)$ is said to converge if the sequence $p_n = (1 + a_1) \cdots (1 + a_n)$ converges. Suppose that $a_n \ge 0$ for all n. Putting $s_m = a_1 + \cdots + a_m$, prove that $s_n \le p_n \le e^{s_n}$, and deduce that $\prod_{n=1}^{\infty} (1+a_n)$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges. Evaluate $\prod_{n=2}^{\infty} (1+1/(n^2-1))$.
- 11. Let f be continuous on [-1, 1] and twice differentiable on (-1, 1). Let $\phi(x) = (f(x) f(0))/x$ for $x \neq 0$ and $\phi(0) = f'(0)$. Using a second order mean value theorem for f, show that $\phi'(x) = f''(\theta x)/2$ for some $0 < \theta < 1$. Hence prove that there exists $c \in (-1, 1)$ with f''(c) = f(-1) + f(1) 2f(0).
- 12. Prove the theorem of Darboux: that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable then f' has the "property of Darboux". (That is to say, if a < b and f'(a) < z < f'(b) then there exists c, a < c < b, with f'(c) = z.)
- 13. Construct a function from \mathbb{R} to \mathbb{R} that is infinitely-differentiable, but is identically 1 on [-1,1] and identically 0 outside (-2,2).